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Announcements

I Midterm 2: Due March 31 at 5:00pm, email solutions to me

I HW 6: Due March 31 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

I Today’s Lecture
I Slides
I Plots produced by R code
I Slides + R code available on course website

I Lecture Structure
I Microphones are muted when you enter the class.
I But please ask questions, remember to unmute / mute
I Let me know about audio issues
I You are welcome to try to communicate with other zoom

features, although I am somewhat a beginner
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Outline for Remainder of Course

I Textbook: Efron "Large Scale Inference"
I Available free online, see course website

I Cover parts of chapters 2–5
I Multiple testing, family wise error rate
I False discovery rate, local FDR
I Empirical Bayesian Methods for testing

I Homeworks
I Questions from Efron and some I write
I Posted on course website
I Solutions emailed to TA Scott Liang at ricestat533@gmail.com
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Hypothesis Testing Review
Motivating Example:
I Observe expression of gene

for cancer and healthy
patients

I Question: Is this gene
differentially expressed across
2 groups, e.g. different mean
expression in cancer and
healthy patients
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Mathematical Notation:

I X1, . . . , Xn1 ∼ N(µ1, σ
2) (healthy controls)

I Xn1+1, . . . , Xn1+n2 ∼ N(µ2, σ
2) (cancer patients)

I n = n1 + n2

H0 : µ1 = µ2 no difference
H1 : µ1 6= µ2 gene is differentially expressed

Note: Model not particularly accurate, see plot.
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Hypothesis Test
One solution: Two sample equal variance t-test

T =

≡X̄2︷ ︸︸ ︷
1
n2

n∑
j=n1+1

Xj −

≡X̄1︷ ︸︸ ︷
1
n1

n1∑
j=1

Xj

s
where s is the standard error of the numerator

s2 =
∑n1
j=1(Xj − X̄1)2 +

∑n
j=n1+1(Xj − X̄2)2

n− 2

( 1
n1

+ 1
n2

)
Assuming H0 is true:

T ∼ Tn1+n2−2

Conclusions:

I Choose α, reject H0 if |T | > Tα/2,n1+n2−2.
I Compute p-value, 2P (|T | > |Tn−2|) where Tn−2 is

t-distributed with n− 2 dof
8



Application to Gene
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I X̄2 ≈ 0.21 (cancer)
I X̄1 ≈ −0.19 (healthy)
I T ≈ 1.48
I p-value ≈ 0.14

Note: T is asymptotically N(0, 1) even if Xi not normal. So
procedure will be reasonable supposing n is “large.”
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Modern Hypothesis Testing
Features of Modern Testing:

I Need to test 1000s to millions of hypotheses
I Most null hypotheses are true.

Example: Measure expression of N ≈ 6000 genes for n = 102
patients (50 control, 52 prostate cancer)
I matrix Xij for i = 1, . . . , N and j = 1, . . . , n

I rows (i) index gene, N total
I columns (j) index patient, n total
I j = 1, . . . , n1 are controls
I j = n1 + 1, . . . , n1 + n2 = n are cancer patients

I Xi1, . . . , Xin1 ∼ N(µi1, σ2
i )

I Xi,n1+1, . . . , Xin ∼ N(µi2, σ2
i )

H0i : µi1 = µi2

H1i : µi1 6= µi2

for i = 1, . . . , N .
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prostate Data Example

Showed result for i = 1. But there are approximately 6000 genes.
So we can compute:

I Test statistics Ti for i = 1, . . . , 6000
I p-values pi for i = 1, . . . , 6000
I What do we do with this information?

I How to generalize notations such as Type I Error to many tests?
I Reasonable thresholds for declaring “significant”
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New Opportunities
Plot the distribution of (transformed) test statistics and p-values:

z stat = Zi = Φ−1(Fn−2(Ti))
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I Excessive large test statistics / small p-values
I Possible Analysis:

I Classify 26 T statistics greater than 3.5 as discoveries
I Expect about 2.1 = N(1− FTn−2(3.5)) T statistics greater

than 3.5 (if all nulls true)
I So about 2.1/26 < 10% of discoveries are false

This type of analysis is impossible with traditional testing. 12



Areas of Application

I Genomic data: small number of patients (hundreds or
thousands) but large number of variables / patient
I Gene expression
I Protein expression
I Mutation data, e.g. SNPs

I Imaging Data: 1 hypothesis per pixel / voxel

13



Outline

Course Information

Multiple Testing Motivation

Family Wise Error Rate

14



Family Wise Error Rate Background

I Family wise error rate (FWER) is generalization of Type I Error
to multiple testing

I Controlling FWER was popular approach to multiple testing
through mid 1990s

I Most appropriate when small number of tests (tens)
I Strongly frequentist
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Setup and Notation
I P denote a model (set of probability distributions).
I R is a (nonrandomized) test function which rejects or does not

reject the hypotheses H01, . . . ,H0N .

R : X → S{1, . . . , N}

I S denotes the power set (all possible subsets of 1, . . . , N).
I R(X) specifies which null hypotheses are rejected.

I For a given P ∈ P, I0 specifies which null hypotheses are true.

I0 : P → S{1, . . . , N}

I The family wise error rate of R is

FWERR = sup
P∈P

P (∪i∈I0(P ){i ∈ R(X)})

I Family wise error rate (FWER) is the probability that any H0i
is falsely rejected. (Equation 3.11 in Efron.)
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Bonferroni Correction

I Let pi be a p-value for hypothesis H0i
I For any P ∈ P where H0i is true pi ∼ Unif [0, 1]
I Detail: Actually pi needs to be stochastically no smaller than

Unif [0, 1]
I The Bonferroni rejection region is

R(X) = {i : i ∈ {1, . . . , N}, pi < α/N}

I Bonferroni is stricter than controlling Type I error for single
hypothesis at level α
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Bonferroni Controls FWER
For any P ∈ P

P (∪i∈I0(P ){i ∈ R(X)}) ≤
∑

i∈I0(P )
P ({i ∈ R(X)})

≤
∑

i∈I0(P )
P (pi < α/N)

≤
∑

i∈I0(P )
α/N

≤
N∑
i=1

α/N

= α

Thus
FWERR = sup

P∈P
P (∪i∈I0(P ){i ∈ R(X)}) ≤ α
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Adjusted p-values

I Rα for 0 ≤ α ≤ 1 is a set of tests such that Rα controls
FWER at α

I The adjusted p-value for H0i is

p̃i = inf{α : i ∈ Rα(X)}

I If Rα are Bonferroni tests, then

p̃i = min(Npi, 1)

I Idea: Rather than specify an α to control FWER and report a
set of significant hypotheses, report the adjusted p-values.
Reader of results can choose own α.
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Bonferroni

I Bonferroni makes no assumptions on dependence structure of
p-values (good)
I Now: Discuss in context of simple normal example

I Bonferroni is very conservative, especially with N large (bad)
I Discuss later in context of prostate data
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Sidak’s Procedure for Independent Hypotheses

I Sidak’s Procedure: Reject H0i if

pi ≤ 1− (1− α)1/N

I Threshold is decreasing in N , so rejecting with many
hypotheses becomes more stringent.

I More liberal than Bonferroni because
1− (1− α)1/N > α/N

I Theorem: If pi are independent, then Sidak’s procedure
controls FWER at α.
I Homework question, use facts:

P (∪iAi) = 1− P (∩iAi)

P (∩iAi) =
∏

i

P (Ai) (when Ai are independent)
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Dependent Tests
Example:

I Xj ∈ R2

I Xj ∼ N(µ,Σ) for j = 1, . . . , n
I µ = (µ1, µ2)T

Σ =
(

1 −0.9
−0.9 1

)
I For i = 1, 2 hypotheses are:

H0i : µi = 0
H1i : µi > 0

I Simulate under the global null (H01 and H02 true) M = 1000
times

I Compute p-value (1 sided z-test) for each simulation run, each
hypothesis

I Result M pairs of p-values
22



p-value Joint Distribution
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I p-values demonstrate strong negative correlation
I Sidak’s procedure may not control FWER for such model
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Holm’s Procedure

I Order the p-values p(1) ≤ p(2) ≤ . . . ≤ p(N)
I Holm’s procedure at α rejects hypothesis for p(i) if

p(j) ≤
α

N − j + 1 for j = 1, . . . , i

I Holm has higher power than Bonferroni because
α

N
≤ α

N − j + 1 for all j

I Holm controls FWER at α
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Holm Visual with 20 p-values
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Holm Visual with 20 p-values
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Message: The decision to reject pi can change if pj for j 6= i
changes even if i remains the same.
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Proof of Holm FWER Control

Step 1:
Define: N0 = #I0 = number of true nulls
Claim:

{Falsely reject a null} ⊆ {true null with p-value ≤ α/N0} (1)

I p(i) ≡ smallest p-value among true nulls
I p(1), . . . , p(i−1) are false nulls
I i− 1 ≤ N −N0 = number of false nulls
I i ≤ N −N0 + 1
I If a null is falsely rejected, then p(i) must be rejected

p(i) ≤
1

N − i+ 1 ≤
1

N − (N −N0 + 1) + 1 = α

N0

27



Proof of Holm FWER Control

Step 2: Using Equation (1) and Bonferroni like proof we have

P ({Falsely reject a null}) ≤ P ({true null with p-value ≤ α/N0})
≤ P (∪i∈I0pi ≤ α/N0)
≤
∑
i∈I0

P (pi ≤ α/N0)

≤
∑
i∈I0

α/N0

≤ α

Since holds for any P ∈ P, obtain FWER control.
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Bonferroni and prostate Data
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I Standard: 477 p-values < 0.05 (too liberal)
I Bonferroni: 2 p-values < 0.05 / N (too conservative)
I Potential solution: Use Bonferroni with larger α

I Doesn’t Work: With α = 0.5, Bonferroni bound is
α/N < 0.0001, satisfied by only 14 hypotheses

I FWER is too strict a criteria to control in high dimensional test
settings
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Summary

I Historical development of multiple testing through 1980s
focused on controlling FWER
I Several creative ways to get more power than Bonferroni (e.g.

Holms)
I Among FWER control procedures, Bonferroni remains most

popular due to ease of use
I With additional assumptions (e.g. independence), can obtain

additional power
I Sidak’s procedure
I Hochberg: Did not discuss. Assumes independence, but has

similar flavor to Holm
I Useful with small number of hypotheses (tens)

I Become excessively conservative as N grows large
I Controlling FWER not right criteria for large N
I Desire: Obtain results closer to a Bayesian analysis, i.e.
P (H0i true) = 0.02
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