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Announcements

I HW 7: Due April 7 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

I Lecture Format

I Slides (plots / analyses in R)
I .pdf and .R available on course website

I Lecture Structure

I Microphones are muted when you enter the class.
I But please ask questions, remember to unmute / mute
I Let me know about audio issues (chat window or email if I am

not responding)
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Problem Setup

I Null hypotheses: H01, . . . ,H0N
I Evaluate hypotheses based on:

I Test statistics z1, . . . , zn

I p-values: p1, . . . , pn

I Distribution of p–values under null assumed Unif [0, 1]
I For some models pi will be stochastically larger than Unif [0, 1].

Most results we discuss will hold in this case
I Mostly assume zi are standard normal under H0

I Often the case naturally
I If not, can transform original test statistic xi to N(0, 1):

xi ∼ F (assuming H0i true)

=⇒ zi = Φ−1(F (xi)) ∼ N(0, 1)

I Distribution of zi and pi under the alternative is generally
unknown
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Two Group Model

I π0 = proportion of true nulls
I π1 = 1− π0 = proportion of true alternatives
I yi is indicator H1i is true

I yi ∼ Bernoulli(π1)
I zi (or pi) drawn from distribution:

f0(z) if yi = 0 (i.e. H0i is true)

f1(z) if yi = 1 (i.e. H1i is true)

I The marginal distribution of zi is

f(z) = π0f0(z) + π1f1(z)

I Conceptual Shift: View the sample size as the number of
hypotheses N . Later do asymptotics in N . The number of
observations is fixed.
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Two Group Model

I Let Z ⊆ R
I The measures for f0, f1, f are

F0(Z) =
∫
Z
f0(z)

F1(Z) =
∫
Z
f1(z)

F (Z) =
∫
Z
f(z)

I Can recover the CDFs by letting Z = (−∞, z)
I The mixture model equation holds with these measures:

F (Z) = π0F0(Z) + π1F1(Z)
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Bayes False Discovery Rate
Rejection rule: Suppose report all z ∈ Z as non-null.

Resulting False Discovery Rate:

Fdr(Z) ≡ φ(Z) ≡ P (H0 true|z ∈ Z)︸ ︷︷ ︸
notational equivalence

= π0F0(Z)
F (Z)

The last equality follows from Bayes theorem, hence Bayes False
Discovery Rate:

P (H0 true|z ∈ Z) = P (y = 0|z ∈ Z)

= P (y = 0, z ∈ Z)
P (z ∈ Z)

= P (z ∈ Z|y = 0)P (y = 0)
P (z ∈ Z)

= π0F0(Z)
F (Z)
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Local False Discovery Rate

Alternative Strategy: For each hypothesis report probability H0 is
true.

Local False Discovery Rate:

fdr(z) ≡ φ(z) ≡ P (H0 true|z) = π0f0(z)
f(z)

I Somewhat analogous to reporting p–values rather than reject /
do not reject decisions

I More objective scale which adapts to plausibility of nulls, i.e.
value of π0

I Will discuss more in future lectures, today’s discussion is on
Fdr.
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Estimating the Fdr

Suppose reject all z ∈ Z (e.g. Z = (3,∞)). Would like to report:

Fdr(Z) = π0F0(Z)
F (Z)

But some quantities in Fdr are unknown, so need to estimate
them.

I Fdr depends on π0, F0, and F
I F0(Z) =

∫
Z f0(z) where f0 is density under H0

I Since f0 is known, F0 is known
I If z are test statistics, then usually N(0, 1) (after

transformation)
I If z p-values, then Unif [0, 1].
I When null model wrong, null test–statistics/p-values may not

follow f0.
I Discuss methods to address this in Chapter 6.

I Need estimators for π0 and F .
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Estimating the Fdr

I Since π0 ≈ 1 (usually) can estimate with 1 and obtain upper
bound

Fdr(Z) ≤ F0(Z)
F (Z)

I Similar to BH FDR which control FDR at π0q (conservative)
I Since z ∼ f , the empirical estimator of F (Z) is

F (Z) = 1
N

N∑
i=1

1zi∈Z

I F (Z) is unbiased for F (Z) with variance decreasing with N
I Resulting Estimator:

Fdr(Z) = F0(Z)
1
N

∑N
i=1 1zi∈Z
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prostate data Application
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I Compute z-stat for
N ≈ 6033 hypotheses

I Z = (3,∞)
I F (Z) = 49/6033
I F0(Z) = 1−Φ(3) = 0.00135
I Fdr(Z) ≈ 0.166
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Quality of Estimator

I Choose region Z and reject zi ∈ Z
I Want to know Fdr(Z)
I Report Fdr(Z)
I How close is Fdr(Z) to Fdr(Z)?
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Quality of Estimator: Simulation
I N = 5000
I N0 = 4900
I π0 = 0.98
I f0 = N(0, 1)
I f1 = tdof=5,ncp=2
I Consider rejection regions
Z = (z,∞)

Fdr(Z) = π0F0(Z)
F (Z)

Fdr(Z) = F0(Z)
N−1∑ 1zi∈Z
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Left: Realization of test statistics. Right: FDR and FDR
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Quality of Estimator: Mean and Variance
Consider pseudo–estimator:

Fdr = π0NF0(Z)∑N
i=1 1zi∈Z

I Pseudo–estimator because π0 actually unknown
I But can upper bound with 1 and (usually) induce only small

bias (because π0 near 1)

Define:

N+(Z) =
∑

1zi∈Z

NF (Z)︸ ︷︷ ︸
≡e+(Z)

= Nπ1F1(Z)︸ ︷︷ ︸
≡e1(Z)

+Nπ0F0(Z)︸ ︷︷ ︸
≡e0(Z)

Note: e+(Z) = E[N+(Z)]
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Quality of Estimator

Lemma 2.2 of Efron: Let

γ(Z) = Var(N+(Z))
e+(Z)2

Then

E
[

Fdr(Z)
Fdr(Z)

]
≈ 1 + γ(Z)

Var

(
Fdr(Z)
Fdr(Z)

)
≈ γ(Z)
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Quality of Estimator
Suppressing dependence on Z and performing a Taylor expansion:

Fdr

Fdr
= 1

Fdr

e0
N+

= 1
Fdr

e0
e+︸ ︷︷ ︸

=1

1
1 + (N+ − e+)/e+︸ ︷︷ ︸

Taylor expand

≈ 1−N+ − e+
e+︸ ︷︷ ︸
≡a

+
(
N+ − e+

e+

)2

︸ ︷︷ ︸
≡b

a has mean 0 and is higher order than b. So

E
[

Fdr

Fdr

]
≈ 1 + E

[(
N+ − e+

e+

)2
]

= Var(N+)
e2

+

Var

(
Fdr

Fdr

)
≈ Var

(
−N+ − e+

e+

)
= Var(N+)

e2
+

18



Quality of Estimator: Independent Case

I Expectation and Variance Depend on γ(Z)
I Can estimate in straightforward manner if assume independence

N+(Z) ∼ Binomial(N,F (Z))

γ(Z) = Var(N+(Z))
e+(Z)2 =

=e+(Z)︷ ︸︸ ︷
NF (Z)(1− F (Z))

e+(Z)2 = (1− F (Z))
e+(Z)

I 1− F (Z) ≈ 1 and N+(Z)/e+(Z)→ 1 so

γ̂(Z) = 1
N+(Z)

is a reasonable estimator
I Bias is of lower order (in N) than standard deviation

I Bias ≈ Fdr(Z)/e+(Z) = Fdr(Z)/(NF (Z)) = O(N−1)
I s.d. ≈ Fdr(Z)/

√
e+(Z) = Fdr(Z)/

√
NF (Z) = O(N−1/2)
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Prostate Example
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I Compute z-stat for N ≈ 6033 hypotheses
I Z = (3,∞)
I F (Z) = 49/6033
I F0(Z) = 1− Φ(3) = 0.00135
I Fdr(Z) ≈ 0.166
I γ̂(Z) = 1/49
I ŝ.d.(Fdr) = Fdr

√
γ̂(Z) = 0.0237

I 95% CI (assuming asymptotic normality) is
[0.12, 0.21]

Assumes independence. Discuss more in Chapter 8.
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Back to Simulation
Right Plot:

I Red circle: Fdr(Z)
I Red line segments:

Fdr(Z)± 2Fdr(Z)
√
γ̂(Z)

I Black line: Fdr
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False Discovery Proportion

I Discussed Fdr as estimator for Fdr
I The false discovery proportion is

Fdp = # rejected nulls

# rejected
= N0(Z)
N+(Z)

I Under some assumptions, Fdr is conservatively biased as an
estimator of Fdp See Lemma 2.1 in Efron
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Summary / Preview
I FDR and the FDR control procedure of Benjamini–Hochberg

was developed entirely in a frequentist framework
I Today showed connections with Empirical Bayesian (EB)

modeling
I FDR control of BH and EB presented in different ways:

I With BH FDR control, specify acceptable FDR and then
determine hypotheses to reject

I With empirical Bayes FDR, specify hypotheses to reject (i.e.
region Z) and then report (estimated) FDR of region

I Connect these concepts further next class
I BH FDR control constructed for p-values. Empirical Bayes Fdr

can be applied to test–statistics or p–values. Mostly discussed
test statistics today.

I EB modeling enables definitions and estimators for quantities
such as local fdr which are not possible in the strictly
frequentist framework

I Discussed estimation of Fdr but not local fdr
I Estimation of local fdr somewhat more difficult
I Will discuss in Chapter 5
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