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Announcements

» HW 7: Was due Tuesday at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

» Emailed everyone Exam 2 grades and posted solns online

» HW 8: Due April 16 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

» Lecture Format

» Slides (plots / analyses in R)
» .pdf and .R available on course website

» Lecture Structure

» Microphones are muted when you enter the class.

> But please ask questions, remember to unmute / mute

» Let me know about audio issues (chat window or email if | am
not responding)


ricestat533@gmail.com
ricestat533@gmail.com
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BH FDR Control and Fdr equivalence

Correlation and Fdp Variability

One and Two Sided p—values



Outline

BH FDR Control and Fdr equivalence



Review FDR

» Hyi,...,Hon are hypotheses
» Test procedure results in false discovery proportion of

a  # of false rejections

R # of rejections

for a particular realization of data.

FDR =E

a
—F|—
[maX(R, 1)}
» The BH procedure to reject all Hy;) with @ < iyq, Where

a
—1
R R>0

. . qi
mar = 1,...,N}:pipy < —
i max{i € { } 120, N}

controls FDR at ¢.



Review Bayesian Fdr

» P(Hy; true) = my (prior probability of null i true)

» y; ~ Bernoulli(1 — mp) (latent variable indicating null
true/false)

> Zz’yl ~ fyi

» 2z (or p;) distributed

f(z) = mofo(2) + mfi(2)

where fp is the null distribution of the test statistic (N (0,1))
or p-value (Unifl0,1])
» Reject all p—values / test statistics in Z

7TOF0(Z)

Fdr(2) = P(Ho truelz € 2) =~

= Fy(2)
Fdr(2) = ——y—— SV
N i=1 1z;€2Z



FDR and Fdr Comparison

» FDR and BH: Specify acceptable FDR ¢ and then determine
rejection region.

» Fdr: Specify rejection region, estimate Fdr.

» Location of expectations:

a
FDR=E |=1
1]

nmoFo(Z)  Elal

Fri2) == FZ ~ER

» No testing procedure can control Fdr
» If all nulls true a = R so Fdr=1 if P(R > 0) > 0.
» BH sought to control FDR rather than Fdr partially for this
reason.



BH Algorithm using Fdr Thresholds
> Py, PV

> Let Z = [O,p]
> Recall o)
o\p
Fdr(p) = .
NZ Pi<p
» Further - o
Fdr(pg;)) = <>
N
> Recall .
tmaz Zmax{i S {1,,N} 70 < %}

» Therefore

imaz = max{i € {1,...,N} m(p(z)) <q}

Result: BH algorithm can be expressed in terms of Fdr thresholds.



Interpretation of ¢

» Original: The expected proportion of false discoveries is
bounded by q.
» Using Fdr to Control FDR: The estimated probability the null
is true among z € Z is bounded by gq.
> For some z; € Z, P(Hy; true|z;) < ¢
» For some z; € Z, P(Hy, true|z;) > ¢
» On average across set Z null probability it ¢ across
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Correlation and Fdp Variability
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Correlation

a

———
Fdp

> Correlation in test statistics can induce high variability in F'dp

» Even if the reported FDR control remains correct under the
correlation, the Fdp for a particular realization of the data can
be quite different from the FDR
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Simulation: Independent Case
> N = 3000, No = 2850, mg = 0.95
» fo=N(0,1) (null distribution)
> f1 = N(2.5,1) (alternative distribution)

Frequency
20 40 60 80 100 120

0
L
b
o
o

» Conduct simulation M = 1000 times
» For each run:
» Use BH to control FDR at ¢ = 0.1 each run (right sided
p—values)
» a = number of false rejections
» R = number of total rejections 12



False Proportion Rate Distribution

Frequency
20 40 60 80 100
|

0
L

0.00 0.05 0.10 015 0.20 025
a/R = false proportion rate

» 0.095 = mean of a/R values
» BH control FDR at ¢mg

» Empirically algorithm is successfully controlling FDR
» 0.903 cases FDP < 0.15
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Correlated z-statistics

N = 3000, Ny = 2850, mg = 0.95

fo=N(0,1) (null distribution)

fi = N(2.5,1) (alternative distribution)

5 blocks of test statistics
» Across blocks test statistics independent
» Within blocks, correlation of 0.2 between pairs of test statistics
» Alternative hypotheses equally distributed across blocks

14



Correlated Test Statistics

150
|

100
L

Frequency

50
|

r T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6
a/R = false proportion rate

» 0.097 = mean of a/R values

» Empirically algorithm is successfully controlling FDR (despite
correlation)

» 0.801 cases FDP < 0.15
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Correlation Summary

» Even when correlation does not increase FDR, it can increase
variability of Fdp to point where utility of control over FDR is
questionable.

» Also high variability in Fdp whenever N is low.
» For example with N = 1, BH can control FDR at ¢. But when

null true
31 _J0 R=0
R™°7 11 R=1

so the Fdp is never near q.
» With correlated z, F'dr is generally a more variable an estimate
of Fdr than with uncorrelated z. More difficult to assess
uncertainty in the estimator

= Fo(2)
Fdr(2) = v =y —— SN 1
N 2ui=11z,€Z
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One and Two Sided p—values
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One and Two Sided p—values
> Let z be a test statistic which is standard normal under Hy
» Three types of p—values:
> Left sided: ®(z)
> Right sided: 1 — ®(2)
> Two sided: 2(1 — ®(|z]))
» Choice depends on form of null / alternative which is decided
by context of problem, e.g. with
Ho:p=0
Hy,:p#0

would usually compute two sided p—value.

Discuss Now:

» In multiple testing problems, two-sided p-values often not

appropriate.
» Working with test statistics z; rather than p; often more

straightforward.
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DTI Data

600-

400-

Frequency

200-

-25 0.0 25

z

P> Test statistics z; from DTI data.
» Distribution center is less than 0
» Empirical null (histogram if remove small number of true
alternatives) does note match theoretical null N(0,1)
» Will discuss issues for addressing this in Efron Chapter 6

> Right tail heavier than left tail
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Why Does Asymmetry Happen: Example

v

1ho; 1S mean gene i expression for healthy tissue
1415 1S mean gene ¢ expression for cancer tissue
Test fori=1,...,N:

Ho; @ poi = pai
Hy; : poi # i

Test statistic

Teancer — i'control

S

Z; =

If cancer tends to have no effect (null true) OR increases
expression, then z; corresponding to true alternatives will all be
positive
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DTI Data

» Consider reject large z, Zg = (z,00)

» Compute
— 1—®(z
Fdr(z) = v——=x—— (2)
N 2ie1 lzi>z
Eh 5 ; ; ;
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FDR

| 2 Di = 1-— (I)(ZZ)
> BH FDR control at g equivalent to reject z(;) for i < iz

where
imaz = max{i € {1,...,N}: W(Z(Z)) <q}

-4 -2 0 2 4

Reject 188 hypothesis at FDR control ¢ = 0.1.



DTI Data

» Consider reject small z, Z;, = (—o0, 2)
> Compute

Fdr(z) Est

00 02 04 06 08

1.0

= ®(z)
N Zi:l 1Z¢§z

— Right Sided
— Left Sided

. . ; ; .
_4 -2 0 2 4

No rejections for any ¢ < 0.2 on left.
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Two Sided Tests

» Consider Z = (—o0, —2z) U (z,00)
g S O(—2)+1—-P(2)

Fdr(z) =
% sz\il ]‘Zi<_Z + % Zi\;l ]‘Zi>Z

Fdr(z) Est
0.6 0.8 1.0

0.4

0.2

Reject 108 hypothesis at FDR control ¢ = 0.1.
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Problems with Two Sided Test

» Hides likely important scientific result that true alternatives
nearly all have positive test statistics.
» Rejects fewer hypotheses (108 versus 188) at same FDR
control of ¢ = 0.1.
> Two sided test control at ¢ = 0.1 selects some
Z = (—o00,—2) U (z,00) to reject.
>
> Region (—oo, —z) has Fdr much higher than ¢ = 0.1
» These average out to ¢ = 0.1

O(—2) +
% Zf\il 127‘,<—z +

Fdr(z) =
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Local Fdr

vvyyvyy

v

Even in one sided test, Fdr varies across rejection region
Suppose control FDR at ¢ = 0.1 and reject in region (z, 00)
Fdrin (z,2z + 1) is higher than Fdr in (z + 1, 00)

But this is not conveyed in standard FDR / Fdr framework,
just report ¢ and the set of rejections

Could select small regions (z,z + ), (2 + d, z + 29), ... and
report Fdr for each

Taken to the extreme, for each possible z report a test statistic
specific Fdr

This is the idea behind local Fdr

Cover next week in Chapter 6
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