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Announcements

I HW 7: Was due Tuesday at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

I Emailed everyone Exam 2 grades and posted solns online

I HW 8: Due April 16 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

I Lecture Format

I Slides (plots / analyses in R)
I .pdf and .R available on course website

I Lecture Structure

I Microphones are muted when you enter the class.
I But please ask questions, remember to unmute / mute
I Let me know about audio issues (chat window or email if I am

not responding)
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Outline

BH FDR Control and Fdr equivalence

Correlation and Fdp Variability

One and Two Sided p–values
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Review FDR

I H01, . . . ,H0N are hypotheses
I Test procedure results in false discovery proportion of

a

R
= # of false rejections

# of rejections

for a particular realization of data.
I

FDR = E
[
a

R
1R>0

]
= E

[
a

max(R, 1)

]
I The BH procedure to reject all H0(i) with i ≤ imax where

imax = max{i ∈ {1, . . . , N} : p(i) ≤
qi

N
}

controls FDR at q.
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Review Bayesian Fdr

I P (H0i true) = π0 (prior probability of null i true)
I yi ∼ Bernoulli(1− π0) (latent variable indicating null

true/false)
I zi|yi ∼ fyi

I zi (or pi) distributed

f(z) = π0f0(z) + π1f1(z)

where f0 is the null distribution of the test statistic (N(0, 1))
or p-value (Unif [0, 1])

I Reject all p–values / test statistics in Z

Fdr(Z) = P (H0 true|z ∈ Z) = π0F0(Z)
F (Z)

Fdr(Z) = F0(Z)
1
N

∑N
i=1 1zi∈Z
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FDR and Fdr Comparison

I FDR and BH: Specify acceptable FDR q and then determine
rejection region.

I Fdr: Specify rejection region, estimate Fdr.
I Location of expectations:

FDR = E
[
a

R
1R>0

]
Fdr(Z) = nπ0F0(Z)

nF (Z) = E[a]
E[R]

I No testing procedure can control Fdr
I If all nulls true a = R so Fdr=1 if P (R > 0) > 0.
I BH sought to control FDR rather than Fdr partially for this

reason.
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BH Algorithm using Fdr Thresholds
I p(1), . . . , p(N)
I Let Z = [0, p]
I Recall

Fdr(p) = F0(p)
1
N

∑
1pi≤p

I Further
Fdr(p(i)) =

p(i)
i

N

I Recall

imax = max{i ∈ {1, . . . , N} : p(i) ≤
qi

N
}

I Therefore

imax = max{i ∈ {1, . . . , N} : Fdr(p(i)) ≤ q}

Result: BH algorithm can be expressed in terms of Fdr thresholds.
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Interpretation of q

I Original: The expected proportion of false discoveries is
bounded by q.

I Using Fdr to Control FDR: The estimated probability the null
is true among z ∈ Z is bounded by q.
I For some zi ∈ Z, P (H0i true|zi) < q
I For some zi ∈ Z, P (H0i true|zi) > q
I On average across set Z null probability it q across
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Correlation

I FDR = E
[
a

R
1R>0

]
︸ ︷︷ ︸

F dp
I Correlation in test statistics can induce high variability in Fdp
I Even if the reported FDR control remains correct under the

correlation, the Fdp for a particular realization of the data can
be quite different from the FDR
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Simulation: Independent Case
I N = 3000, N0 = 2850, π0 = 0.95
I f0 = N(0, 1) (null distribution)
I f1 = N(2.5, 1) (alternative distribution)
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I Conduct simulation M = 1000 times
I For each run:

I Use BH to control FDR at q = 0.1 each run (right sided
p–values)

I a = number of false rejections
I R = number of total rejections 12



False Proportion Rate Distribution

a/R = false proportion rate
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I 0.095 = mean of a/R values
I BH control FDR at qπ0

I Empirically algorithm is successfully controlling FDR
I 0.903 cases FDP < 0.15
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Correlated z-statistics

I N = 3000, N0 = 2850, π0 = 0.95
I f0 = N(0, 1) (null distribution)
I f1 = N(2.5, 1) (alternative distribution)
I 5 blocks of test statistics

I Across blocks test statistics independent
I Within blocks, correlation of 0.2 between pairs of test statistics
I Alternative hypotheses equally distributed across blocks
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Correlated Test Statistics

a/R = false proportion rate
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I 0.097 = mean of a/R values
I Empirically algorithm is successfully controlling FDR (despite

correlation)
I 0.801 cases FDP < 0.15
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Correlation Summary

I Even when correlation does not increase FDR, it can increase
variability of Fdp to point where utility of control over FDR is
questionable.
I Also high variability in Fdp whenever N is low.
I For example with N = 1, BH can control FDR at q. But when

null true
a

R
1R>0 =

{
0 R = 0
1 R = 1

so the Fdp is never near q.
I With correlated z, Fdr is generally a more variable an estimate

of Fdr than with uncorrelated z. More difficult to assess
uncertainty in the estimator

Fdr(Z) = F0(Z)
1
N

∑N
i=1 1zi∈Z
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One and Two Sided p–values
I Let z be a test statistic which is standard normal under H0
I Three types of p–values:

I Left sided: Φ(z)
I Right sided: 1− Φ(z)
I Two sided: 2(1− Φ(|z|))

I Choice depends on form of null / alternative which is decided
by context of problem, e.g. with

H0 : µ = 0
Ha : µ 6= 0

would usually compute two sided p–value.

Discuss Now:

I In multiple testing problems, two-sided p-values often not
appropriate.

I Working with test statistics zi rather than pi often more
straightforward.
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DTI Data
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I Test statistics zi from DTI data.
I Distribution center is less than 0

I Empirical null (histogram if remove small number of true
alternatives) does note match theoretical null N(0, 1)

I Will discuss issues for addressing this in Efron Chapter 6
I Right tail heavier than left tail
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Why Does Asymmetry Happen: Example

I µ0i is mean gene i expression for healthy tissue
I µ1i is mean gene i expression for cancer tissue
I Test for i = 1, . . . , N :

H0i : µ0i = µ1i

H1i : µ0i 6= µ1i

I Test statistic

zi = x̄cancer − x̄control

s

I If cancer tends to have no effect (null true) OR increases
expression, then zi corresponding to true alternatives will all be
positive
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DTI Data

I Consider reject large z, ZR = (z,∞)
I Compute

Fdr(z) = 1− Φ(z)
1
N

∑N
i=1 1zi>z
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FDR
I pi = 1− Φ(zi)
I BH FDR control at q equivalent to reject z(i) for i ≤ imax

where

imax = max{i ∈ {1, . . . , N} : Fdr(z(i)) ≤ q}
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Reject 188 hypothesis at FDR control q = 0.1.
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DTI Data

I Consider reject small z, ZL = (−∞, z)
I Compute

Fdr(z) = Φ(z)
1
N

∑N
i=1 1zi≤z
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No rejections for any q < 0.2 on left.
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Two Sided Tests

I Consider Z = (−∞,−z) ∪ (z,∞)
I

Fdr(z) = Φ(−z) + 1− Φ(z)
1
N

∑N
i=1 1zi<−z + 1

N

∑N
i=1 1zi>z
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Reject 108 hypothesis at FDR control q = 0.1.
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Problems with Two Sided Test

I Hides likely important scientific result that true alternatives
nearly all have positive test statistics.

I Rejects fewer hypotheses (108 versus 188) at same FDR
control of q = 0.1.

I Two sided test control at q = 0.1 selects some
Z = (−∞,−z) ∪ (z,∞) to reject.
I Region (z,∞) has Fdr much lower than q = 0.1
I Region (−∞,−z) has Fdr much higher than q = 0.1
I These average out to q = 0.1

Fdr(z) = Φ(−z) + 1− Φ(z)
1
N

∑N
i=1 1zi<−z + 1

N

∑N
i=1 1zi>z
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Local Fdr

I Even in one sided test, Fdr varies across rejection region
I Suppose control FDR at q = 0.1 and reject in region (z,∞)
I Fdr in (z, z + 1) is higher than Fdr in (z + 1,∞)
I But this is not conveyed in standard FDR / Fdr framework,

just report q and the set of rejections
I Could select small regions (z, z + δ), (z + δ, z + 2δ), . . . and

report Fdr for each
I Taken to the extreme, for each possible z report a test statistic

specific Fdr
I This is the idea behind local Fdr
I Cover next week in Chapter 6
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