Estimating the Proportion of True Nulls

James Long jplong@mdanderson.org Rice STAT 533 / GSBS 1283

April 14, 2020

Announcements

- HW 8: Due April 16 at 5:00pm, email TA Scott Liang at ricestat533@gmail.com
- Lectures: Today, Thursday, April 21, April 23
- Take home exam (similar format to Exams 1 and 2)
- Lecture Format
 - Slides (plots / analyses in R)
 - .pdf and .R available on course website
- Lecture Structure
 - Microphones are muted when you enter the class.
 - But please ask questions, remember to unmute / mute
 - Let me know about audio issues (chat window or email if I am not responding)

Using Null Only Region

Parametric Mixture Model: Beta Uniform Mixture

Nonparametric Mixture Model

Data Comparison

Two Group Model

$$f_0(z)$$
 if $y_i = 0$ (i.e. H_{0i} is true)
 $f_1(z)$ if $y_i = 1$ (i.e. H_{1i} is true)

• The marginal distribution of z_i is

$$f(z) = \pi_0 f_0(z) + \pi_1 f_1(z)$$

π_0 Estimation

Thus far in course, always "estimate" π_0 with 1

BH Algorithm: Specify q, then algorithm controls FDR at $\frac{q\pi_0 \leq q}{q\pi_0 \leq q}$

Bayesian Fdr: Recall

$$\mathsf{Fdr}(\mathcal{Z}) = \frac{\pi_0 F_0(\mathcal{Z})}{F(\mathcal{Z})}$$

estimated with

$$\overline{\mathsf{Fdr}}(\mathcal{Z}) = \frac{F_0(\mathcal{Z})}{\frac{1}{N}\sum_i \mathbf{1}_{z_i \in \mathcal{Z}}}$$

so we are estimating an upper bound on $\mathsf{Fdr}(\mathcal{Z})$

Result: Replacing π_0 with 1 results in conservative procedures. Simple and good performance when $\pi_0 \approx 1$.

Reasons for estimating π_0

Adaptive FDR Control:

- Estimate π_0 with $\hat{\pi}_0$
- $\blacktriangleright~$ For FDR control at q, use BH with $q^*=q/\widehat{\pi}_0>q$

$$\blacktriangleright FDR \le \pi_0 q^* = \pi_0 \frac{q}{\widehat{\pi}_0} \approx q$$

- ▶ Since $q^* > q$, cutoff is higher \implies more rejections \implies more power
- π_0 of inherent interest:
 - In gene expression problems comparing controls to cancer tissue, π₀ is the proportion of all genes that are differentially expressed in cancer.
 - Likely very different than the proportion of genes rejected by some FDR procedure. We only reject genes which were are fairly confident are differentially expression (e.g. control FDR at q = 0.1).

Fdr estimates:

► Can obtained consistent estimate of Fdr(Z).

Outline

Using Null Only Region

Parametric Mixture Model: Beta Uniform Mixture

Nonparametric Mixture Model

Data Comparison

Method Overview

• Assumption: Region A_0 such that

$$f_1(z) = 0$$
 for $z \in \mathcal{A}_0$

Then

$$F(\mathcal{A}_0) = \pi_0 F_0(\mathcal{A}_0) + \pi_1 F_1(\mathcal{A}_0)$$
$$= \pi_0 F_0(\mathcal{A}_0)$$

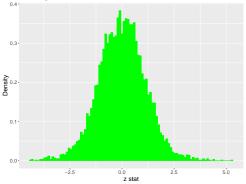
Use plug-in estimator

$$\widehat{\pi}_0 = \frac{N^{-1} \sum_i \mathbf{1}_{z \in \mathcal{A}_0}}{F_0(\mathcal{A}_0)}$$

If Assumption true, π̂₀ unbiased, asymptotically normal for π₀.
If Assumption false, π̂₀ biased high:

$$\widehat{\pi}_0 \to \frac{\pi_0 F_0(\mathcal{A}_0) + \pi_1 F_1(\mathcal{A}_0)}{F_0(\mathcal{A}_0)} = \pi_0 + \pi_1 \frac{F_1(\mathcal{A}_0)}{F_0(\mathcal{A}_0)}$$

Selecting Region \mathcal{A}_0



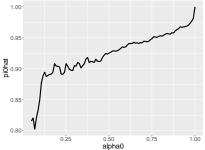
• For $z \sim N(0,1)$ under H_0 , z near 0 mostly null because non-nulls should have large absolute test statistics

Suggests

$$\mathcal{A}_0(\alpha_0) = \left[\Phi^{-1}(0.5 - \alpha_0/2), \Phi^{-1}(0.05 + \alpha_0/2)\right]$$

for some α_0 .

Selecting Region \mathcal{A}_0



At each A₀ (alternatively α₀), these are estimated upper bounds on π₀.

Upper bound

$$\pi_0(\mathcal{A}_0) \equiv \frac{F(\mathcal{A}_0)}{F_0(\mathcal{A}_0)} \le \pi_0$$

Estimated Upper Bound

$$\widehat{\pi}_0(\mathcal{A}_0) \leq \frac{N^{-1} \sum_i \mathbb{1}_{z_i \in \mathcal{A}_0}}{F_0(\mathcal{A}_0)} ? \pi_0$$

For small α_0 , more uncertainty in estimate.

Uncertainty in Estimate

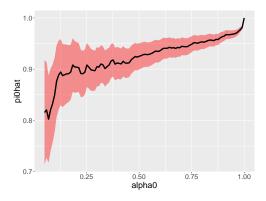
Estimator asymptotically normal with

$$s.d.(\widehat{\pi}_0(\mathcal{A}_0)) = \frac{\sqrt{F(\mathcal{A}_0)(1 - F(\mathcal{A}_0))}}{\sqrt{N}F_0(\mathcal{A}_0)}$$

95% Confidence Interval

$$\widehat{\pi}_0 \pm 2 \times \frac{\sqrt{N^{-2} \sum \mathbf{1}_{z_i \in \mathcal{A}_0} (N - \sum \mathbf{1}_{z_i \in \mathcal{A}_0})}}{\sqrt{N} F_0(\mathcal{A}_0)}$$

Uncertainty in Estimate



- Efron chooses $\alpha_0 = 0.5$, $\mathcal{A}_0 = [-0.67, 0.67]$, $\hat{\pi}_0 = 0.925$ • At each α_0 we have an **estimate** of an **upper bound** on π_0 .
 - If these were not estimates (black curve actual upper bounds), just take smallest value (lowest upper bound is best)
 - ▶ But a lot of uncertainty, especially for α₀ < 0.2, so these upper bounds are a bit dangerous to use.

Using Null Only Region

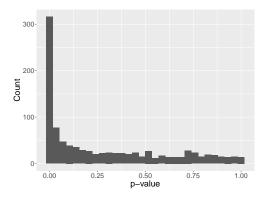
Parametric Mixture Model: Beta Uniform Mixture

Nonparametric Mixture Model

Data Comparison

Kidney Cancer Example

- For each gene, associate expression level with survival time in Cox model
- ▶ Obtain ~ 1000 p-values
- **Goal:** Estimate π_0

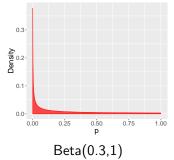


Mixture Model

 \blacktriangleright p_i are drawn from

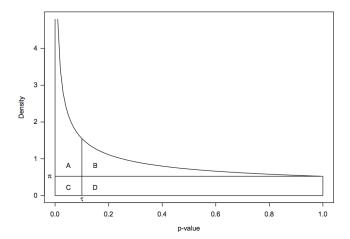
$$f(p) = \pi_0 \underbrace{f_0(p)}_{\text{Unif}[0,1]} + (1 - \pi_0) \underbrace{f_1(p)}_{\text{unknown}}$$

- Choose some parametric model for f_1
- $Beta(\alpha, 1)$ may be reasonable choice



Proposed in (Pounds, Stan, and Stephan W Morris. 2003) Bioinformatics.

BUM Model



Parameter Estimation in BUM Model

- Two parameters π_0 and α
- Estimate with maximum likelihood
- Mixture models typically do not have closed form solutions for MLE
- Use quasi-newton (e.g. BFGS) or EM Algorithm
- Obtain uncertainties on π_0 from Fisher information matrix

Using Null Only Region

Parametric Mixture Model: Beta Uniform Mixture

Nonparametric Mixture Model

Data Comparison

Mixture Model

 \blacktriangleright z_i (or p_i) are drawn from

$$F(z) = \pi_0 \underbrace{F_0(z)}_{\text{known}} + (1 - \pi_0) \underbrace{F_1(z)}_{\text{unknown}}$$

- Parametric model (such as beta) imposes restrictions on shape of F₁
- ▶ Non-parametric estimation of F₁ offers increased flexibility
- Semi-parametric problem: parametric estimation of π₀ and non-parametric estimation of F₁

Identifiability

 (π_0,F_1) are not jointly identifiable given sample $z_1,\ldots,z_N\sim F$

 \blacktriangleright Suppose (π_0',F_1') the true value of the parameters

$$F(z) = \pi'_0 F_0(z) + (1 - \pi'_0) F'_1(z)$$

 Setting (π₀ = 0, F₁ = F) will generate same data. Interpretation: There are no true nulls and the observed test statistic distribution is entirely generated by true alternatives.
More generally let π₀^{*} < π₀ and define

$$F_1^*(z) = \frac{F(z) - \pi_0^* F_0(z)}{1 - \pi_0^*}$$

Then F_1^* is a valid cdf and

$$\pi'_0 F_0(z) + (1 - \pi'_0) F'_1(z) =_d \pi^*_0 F_0(z) + (1 - \pi^*_0) F^*_1(z)$$

"Estimation of a two-component mixture model with applications to multiple testing." Patra and Sen. JRSSB 2016

Identifiability

linstead of estimating π_0 , estimate:

$$\pi_0' = \max_{\pi_0 \in [0,1]} \{ \pi_0 : rac{F(z) - \pi_0 F_0(z)}{1 - \pi_0} ext{ is a valid c.d.f. } \}$$

π'₀ is the largest component of F₀ which can be removed from F while still producing a valid c.d.f.

$$F_1'(z) = \frac{F(z) - \pi_0' F_0(z)}{1 - \pi_0'}$$

Outline of Estimation Strategy

• \widehat{F} is empirical c.d.f. of z_1, \ldots, z_n

Define

$$\widehat{F}_{1,\pi_0}(z) = \frac{\widehat{F}(z) - \pi_0 F_0(z)}{1 - \pi_0}$$

Note: $\widehat{F}_{1,\pi_0}(z)$ may not be c.d.f.

Find closest c.d.f. to $\widehat{F}_{1,\pi_0}(z)$ via isotonic regression

$$\check{F}_{1,\pi_0}(z) = \underset{\text{c.d.f. }W}{\operatorname{argmin}} \int_z (W(z) - \widehat{F}_{1,\pi_0}(z))^2 d\widehat{F}_{1,\pi_0}(z)$$

Measure distance:

$$\gamma(\pi_0) = d(\check{F}_{1,\pi_0}(z), \widehat{F}_{1,\pi_0}(z)) = \int_z (\check{F}_{1,\pi_0}(z) - \widehat{F}_{1,\pi_0}(z))^2 \check{F}_{1,\pi_0}(z)$$

"Estimation of a two-component mixture model with applications to multiple testing." Patra and Sen. JRSSB 2016

Outline

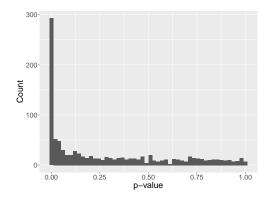
Using Null Only Region

Parametric Mixture Model: Beta Uniform Mixture

Nonparametric Mixture Model

Data Comparison

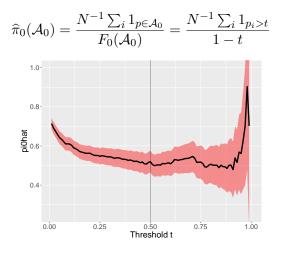
Data



- 1. Null Only Region
- 2. BUM
- 3. Nonparametric Mixture Model of Patra-Sen

Null Only Method

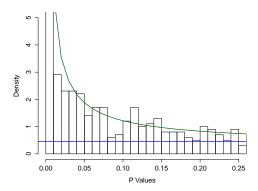
Define $\mathcal{A}_0 = (t, 1]$. Then:



Choose t = 0.5. $\hat{\pi}_0 = 0.52$

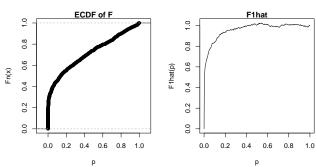
Bayesian Uniform Mixture

- > library(ClassComparison)
- > out <- Bum(ps)
- > par(mar=c(5,5,1,1))
- > hist(out,xlim=c(0,0.25),ylim=c(0,5),
- + cex.lab=1.3,cex.axis=1.3)



$$\hat{\pi}_0 = 0.452$$

Nonparametric Mixture via Isotonic Regression



 $F(p) = \pi_0 F_0(p) + (1 - \pi_0) F_1(p)$

Left plot: Empirical cdf of p-values

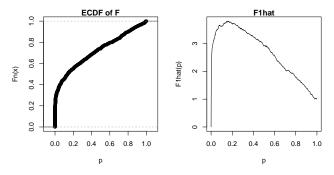
 $\widehat{\pi}_0 = 0.522$

Right plot:

$$\widehat{F}_1(p) = \frac{\widehat{F}(p) - \widehat{\pi}_0 F_0(p)}{1 - \widehat{\pi}_0}$$

Nearly (up to sampling error) non-decreasing. Looks like a cdf.

Consider $\hat{\pi}_0 = 0.9$



Left plot: Empirical cdf of p-values

- $\widehat{\pi}_0 = 0.9$
- Right plot:

$$\widehat{F}_1(p) = \frac{\widehat{F}(p) - \widehat{\pi}_0 F_0(p)}{1 - \widehat{\pi}_0}$$

Does not look at all like cdf! $\hat{\pi}_1$ Estimate too large.

Review / Summary / Further Directions

- \blacktriangleright Nonparametric model of Patra / Sen can produce confidence intervals for π_0
- Many other π_0 estimation methods:

- "Adaptive linear step-up procedures that control the false discovery rate" Biometrika. Benjamini et al 2006
- "Estimating the proportion of true null hypotheses, with application to DNA microarray data. JRSSB. Langaas et al 2005
- "A direct approach to false discovery rates." JRSSB. Storey 2002
- Efron is somewhat skeptical of putting a lot of effort into π₀ estimation: "The exact choice of π̂₀ is not crucial. A much more crucial and difficult issue is the appropriate choice of the null density f₀."
 - "It is inappropriate to be concerned about mice when there are tigers abroad." - George Box
- Thursday: Local Fdr, Sections 5.1 and 5.2 in Efron