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Announcements

I HW 8: Due April 16 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

I Lectures: Today, Thursday, April 21, April 23

I Take home exam (similar format to Exams 1 and 2)

I Lecture Format

I Slides (plots / analyses in R)
I .pdf and .R available on course website

I Lecture Structure

I Microphones are muted when you enter the class.
I But please ask questions, remember to unmute / mute
I Let me know about audio issues (chat window or email if I am

not responding)
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Two Group Model

I Hypotheses H01, . . . ,H0N
I π0 = proportion of true nulls
I π1 = 1− π0 = proportion of true alternatives
I yi is indicator H1i is true

I yi ∼ Bernoulli(π1)
I zi (or pi) drawn from distribution:

f0(z) if yi = 0 (i.e. H0i is true)

f1(z) if yi = 1 (i.e. H1i is true)

I The marginal distribution of zi is

f(z) = π0f0(z) + π1f1(z)
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π0 Estimation

Thus far in course, always “estimate”π0 with 1

I BH Algorithm: Specify q, then algorithm controls FDR at
qπ0 ≤ q

I Bayesian Fdr: Recall

Fdr(Z) = π0F0(Z)
F (Z)

estimated with

Fdr(Z) = F0(Z)
1
N

∑
i 1zi∈Z

so we are estimating an upper bound on Fdr(Z)

Result: Replacing π0 with 1 results in conservative procedures.
Simple and good performance when π0 ≈ 1.
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Reasons for estimating π0

I Adaptive FDR Control:
I Estimate π0 with π̂0
I For FDR control at q, use BH with q∗ = q/π̂0 > q
I FDR ≤ π0q

∗ = π0
q

π̂0
≈ q

I Since q∗ > q, cutoff is higher =⇒ more rejections =⇒ more
power

I π0 of inherent interest:
I In gene expression problems comparing controls to cancer tissue,

π0 is the proportion of all genes that are differentially expressed
in cancer.

I Likely very different than the proportion of genes rejected by
some FDR procedure. We only reject genes which were are
fairly confident are differentially expression (e.g. control FDR at
q = 0.1).

I Fdr estimates:
I Can obtained consistent estimate of Fdr(Z).
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Method Overview
I Assumption: Region A0 such that

f1(z) = 0 for z ∈ A0

I Then

F (A0) = π0F0(A0) + π1F1(A0)
= π0F0(A0)

I Use plug–in estimator

π̂0 = N−1 ∑
i 1z∈A0

F0(A0)

I If Assumption true, π̂0 unbiased, asymptotically normal for π0.
I If Assumption false, π̂0 biased high:

π̂0 →
π0F0(A0) + π1F1(A0)

F0(A0) = π0 + π1
F1(A0)
F0(A0)
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Selecting Region A0
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I For z ∼ N(0, 1) under H0, z near 0 mostly null because
non-nulls should have large absolute test statistics

I Suggests

A0(α0) =
[
Φ−1(0.5− α0/2),Φ−1(0.05 + α0/2)

]
for some α0.
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Selecting Region A0
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I At each A0 (alternatively α0), these are estimated upper
bounds on π0.
I Upper bound

π0(A0) ≡ F (A0)
F0(A0) ≤ π0

I Estimated Upper Bound

π̂0(A0) ≤
N−1 ∑

i 1zi∈A0

F0(A0) ? π0

I For small α0, more uncertainty in estimate.
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Uncertainty in Estimate

I Estimator asymptotically normal with

s.d.(π̂0(A0)) =
√
F (A0)(1− F (A0))√

NF0(A0)

I 95% Confidence Interval

π̂0 ± 2×

√
N−2 ∑

1zi∈A0(N −
∑

1zi∈A0)
√
NF0(A0)

11



Uncertainty in Estimate
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I Efron chooses α0 = 0.5, A0 = [−0.67, 0.67], π̂0 = 0.925
I At each α0 we have an estimate of an upper bound on π0.

I If these were not estimates (black curve actual upper bounds),
just take smallest value (lowest upper bound is best)

I But a lot of uncertainty, especially for α0 < 0.2, so these upper
bounds are a bit dangerous to use.
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Kidney Cancer Example

I For each gene, associate expression level with survival time in
Cox model

I Obtain ∼ 1000 p-values
I Goal: Estimate π0
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Mixture Model
I pi are drawn from

f(p) = π0 f0(p)︸ ︷︷ ︸
Unif[0,1]

+(1− π0) f1(p)︸ ︷︷ ︸
unknown

I Choose some parametric model for f1
I Beta(α, 1) may be reasonable choice
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Beta(0.3,1)

Proposed in (Pounds, Stan, and Stephan W Morris. 2003) Bioinformatics.

15



BUM Model
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Parameter Estimation in BUM Model

I Two parameters π0 and α
I Estimate with maximum likelihood
I Mixture models typically do not have closed form solutions for

MLE
I Use quasi-newton (e.g. BFGS) or EM Algorithm
I Obtain uncertainties on π0 from Fisher information matrix
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Mixture Model

I zi (or pi) are drawn from

F (z) = π0 F0(z)︸ ︷︷ ︸
known

+(1− π0) F1(z)︸ ︷︷ ︸
unknown

I Parametric model (such as beta) imposes restrictions on shape
of F1

I Non–parametric estimation of F1 offers increased flexibility
I Semi–parametric problem: parametric estimation of π0 and

non-parametric estimation of F1
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Identifiability
(π0, F1) are not jointly identifiable given sample z1, . . . , zN ∼ F

I Suppose (π′0, F ′1) the true value of the parameters

F (z) = π′0F0(z) + (1− π′0)F ′1(z)

I Setting (π0 = 0, F1 = F ) will generate same data.
Interpretation: There are no true nulls and the observed test
statistic distribution is entirely generated by true alternatives.

I More generally let π∗0 < π′0 and define

F ∗1 (z) = F (z)− π∗0F0(z)
1− π∗0

Then F ∗1 is a valid cdf and

π′0F0(z) + (1− π′0)F ′1(z) =d π
∗
0F0(z) + (1− π∗0)F ∗1 (z)

“Estimation of a two-component mixture model with applications to multiple testing.” Patra and Sen. JRSSB 2016
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Identifiability

I Instead of estimating π0, estimate:

π′0 = max
π0∈[0,1]

{π0 : F (z)− π0F0(z)
1− π0

is a valid c.d.f. }

I π′0 is the largest component of F0 which can be removed from
F while still producing a valid c.d.f.

F ′1(z) = F (z)− π′0F0(z)
1− π′0
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Outline of Estimation Strategy
I F̂ is empirical c.d.f. of z1, . . . , zn
I Define

F̂1,π0(z) = F̂ (z)− π0F0(z)
1− π0

Note: F̂1,π0(z) may not be c.d.f.
I Find closest c.d.f. to F̂1,π0(z) via isotonic regression

F̌1,π0(z) = argmin
c.d.f. W

∫
z
(W (z)− F̂1,π0(z))2dF̂1,π0(z)

I Measure distance:

γ(π0) = d(F̌1,π0(z), F̂1,π0(z)) =
∫
z
(F̌1,π0(z)−F̂1,π0(z))2F̌1,π0(z)

I Select largest π0 such that γ(π0) is small
I Suggested strategy π̂0 = argmax

π0

γ′′(π0)

“Estimation of a two-component mixture model with applications to multiple testing.” Patra and Sen. JRSSB 2016
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Data
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1. Null Only Region
2. BUM
3. Nonparametric Mixture Model of Patra–Sen

24



Null Only Method

Define A0 = (t, 1]. Then:

π̂0(A0) = N−1 ∑
i 1p∈A0

F0(A0) = N−1 ∑
i 1pi>t

1− t
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Choose t = 0.5. π̂0 = 0.52
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Bayesian Uniform Mixture
> library(ClassComparison)

> out <- Bum(ps)

> par(mar=c(5,5,1,1))

> hist(out,xlim=c(0,0.25),ylim=c(0,5),

+ cex.lab=1.3,cex.axis=1.3)
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π̂0 = 0.452
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Nonparametric Mixture via Isotonic Regression

F (p) = π0F0(p) + (1− π0)F1(p)
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I Left plot: Empirical cdf of p-values
I π̂0 = 0.522
I Right plot:

F̂1(p) = F̂ (p)− π̂0F0(p)
1− π̂0

Nearly (up to sampling error) non-decreasing. Looks like a cdf.
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Consider π̂0 = 0.9
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I Left plot: Empirical cdf of p-values
I π̂0 = 0.9
I Right plot:

F̂1(p) = F̂ (p)− π̂0F0(p)
1− π̂0

Does not look at all like cdf! π̂1 Estimate too large.
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Review / Summary / Further Directions

I Nonparametric model of Patra / Sen can produce confidence
intervals for π0

I Many other π0 estimation methods:
I “Adaptive linear step-up procedures that control the false

discovery rate” Biometrika. Benjamini et al 2006
I “Estimating the proportion of true null hypotheses, with

application to DNA microarray data. JRSSB. Langaas et al 2005
I “A direct approach to false discovery rates.” JRSSB. Storey 2002
I . . . .

I Efron is somewhat skeptical of putting a lot of effort into π0
estimation: “The exact choice of π̂0 is not crucial. A much
more crucial and difficult issue is the appropriate choice of the
null density f0.”
I “It is inappropriate to be concerned about mice when there are

tigers abroad.” - George Box
I Thursday: Local Fdr, Sections 5.1 and 5.2 in Efron
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