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Announcements

» HW 8: Due today at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

» HW 9: Due April 23 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

P Lectures: Today, April 21, April 23

» Take home exam (similar format to Exams 1 and 2)
» Lecture Format

> Slides (plots / analyses in R)
» pdf and .R available on course website

» Lecture Structure

» Microphones are muted when you enter the class.

> But please ask questions, remember to unmute / mute

> Let me know about audio issues (chat window or email if | am
not responding)


ricestat533@gmail.com
ricestat533@gmail.com
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Local False Discovery Rate (fdr)

Local fdr with Mixture Models

Fdr versus FWER Scaling
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Two Group Model

Hypotheses Hy, ..., Hon
m = proportion of true nulls
w1 = 1 — mg = proportion of true alternatives
y; is indicator Hy; is true
» y; ~ Bernoulli(m)
zi (or p;) drawn from distribution:

vvyyy

v

fo(z) if y; =0 (i.e. Hy; is true)
fl(z) ify; =1 (|e Hy; is true)

» The marginal distribution of z; is

f(2) = mofo(2) + mfi(2)



Local Fdr

» The local Fdr is

7o fo(2)
f(z)

» It is “local” because reports false discovery rate at single point,
rather than over region Z.
» Uses of FDR, Fdr, fdr
> FDR: Report set of p-values and associated FDR ¢
» Fdr: Report tests in set Z and associated Fdr

> With fdr (local false discovery rate), report fdr(z) for each
hypothesis

» More specifically report estimate f/d\r(z)

fdr(z) = P(y =0|2) =



Estimation of fdr

fdr(z) = mofo(2)
f(z)
» Need estimates of 7y and f(2)
» Discussed estimation of 7 in last lecture
» Now: Discuss estimation of f(z)
> Sample z1,...,2, ~ f
» So this is a density estimation problem



Kernel Density Estimation

» Kernel density estimate

f(@:,jViNlK(zhzi)

» K is the kernel function (often standard normal density)

» h is the bandwidth, controls how smooth density estimate is
» Usually: h estimated from the data to obtain appropriately
smooth estimate
> If his very large K (%) ~ 1/+/27 for z in range of z;. Then
density will be constant over range of z;
» If his very small K (iji) ~ (0 at z # z;. So density estimate
will be point masses at z;.




Prostate Data
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Histogram of the prostate cancer z statistics.



Prostate KDE Estimate of f

h= h=0.00001 h=0.173
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Left) Bandwidth too large Center) Bandwidth too small Right)
Reasonable bandwidth.
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Prostate Local fdr with KDE
Using h = 0.173 compute:

far(z) = T02)
f(2)
° A 5 ; i

> Probably too wiggly.
» Could try increasing bandwidth
» Or use a different density estimation method.
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Flexible MLE Density Estimation
J N
> f(2) = e2=0%% | controls flexibility of model
> f(z)>0
» [y chosen to normalize density

[o¢) J 1
fo = — log/ =1 P17 g,
—0o0

» Estimate 51,...,0; via MLE

R N .
[ = argmax H e2i=0 0%
Bzt

» Efron approximates MLE using Poisson regression
P Partition space of test statistics into equal width bins

Z= Ulezk
» 1 = center of bin Zj,
> Y = Z 1271€Zk

> yi, ~iia Poisson(vy) where log(vy) = Y7 Bl
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Prostate f with Poisson Regression J = 7
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Prostate Local fdr with Poisson Regression
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Local fdr fairly symmetric about 0.
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Local fdr versus Fdr
» Let Z = (z,00) and

S mo(1 — @(z
Fdrr(2R) = _01( - (2))

N Zi:l 1Z¢>Z
» Let Z;, = (—o0,2) and

—_ 7/'(\'0(1)(2)
FdI’L(ZR) =
N-1YN 1
=1 +tz;<z
<
- — Local fdr
Right Fdr
© | — Left Fdr
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o
©
> @
% o
kel
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2 statistic

Note that at given z, Fdr always less than local fdr.
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DTI Local fdr with Poisson Regression
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DTI z—statistics contain substantial asymmetry. More signal on the
right.
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DTI Local fdr with Poisson Regression
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Almost no signal on the left.
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Outline

Local fdr with Mixture Models
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Kidney Cancer p—values

P> For each gene, associate expression level with survival time in
Cox model

» Obtain ~ 1000 p-values
» Goal: Estimate local fdr at each p—value
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Mixture Model

p; are drawn from

——
Unif[0,1] Beta(a,1)
30-
2
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p
Beta(0.3,1)

Proposed in (Pounds, Stan, and Stephan W Morris. 2003) Bioinformatics.
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o Estimate

» Recall Beta(a, 1) density is:
pa—l

f(pla) = Bla.1)

» Since o < 1 for modeling p—value distributions, f(p|«)

decreasing in p

() = o

» So there is an additional « uniform component which can be
removed from Beta(c, 1)

» So can define:

v

7T0:L+(1—L)Oé

> Assumption: p-value density under H, is 0 at p=1
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BUM Model Local fdr

> I andAa are MLAEs of L and «
> 7/1\'0:L—|—(1—L)a
| 2

Afo(p)

fdr(p) =

70
o) L4+a-1)

local fdr
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Outline

Fdr versus FWER Scaling
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Fdr/fdr Asymptotics in N

Question: Assuming two group model, as N increases, how do
inferences for hypothesis Hy; with z-statistic z change?

» Local fdr:

(s - Tofol2)
=750

As N increases, variance of estimates 7y and f decrease. But

should not dramatically change f/d\r(z) (supposing original N
reasonably large).

» Fdr: Bayesian False Discovery Rate of region Z is
— ToFo(Z
Far(z) = 0fol2)

F(Z)

If z € Z will continue (as N increases) to reject Hy; and
Fdr(Z) will converge to Fdr(Z2)

Message: Assuming two group model, do not pay a penalty for
larger N for Fdr, local fdr, and FDR. In fact, larger N helpful
because estimators have smaller variance.
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Bonferroni Asymptotics in N

» p=1— Fy(z) (right sided p-value)

» Bonferroni rejects if
e}
< —
P=N

» So increasing N may change rejection decision.

» Rejection threshold converging to O rather than any fixed
quantity.

» Similar story for Holm / Hochberg (exercise 5.6 in textbook)

» This is general problem with FWER control procedures.
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Two Group Model Violations

Question: If Fdr/fdr/FDR do not pay price for larger N (in fact
estimators have smaller variance), why not just throw all possible
hypotheses together from all sorts of experiments?

P> Result: Violation of Assumptions of 2-group model
> Example:
> N; = 1000 gene panel of genes thought to be associated with
cancer
> Two group model parameters: mo1, fi1
» About No = 20000 genes in second panel, not known to be
associated with cancer
> Two group model parameters: mo2, fi2
> Very likely mp2 > mo1 (more true nulls in second panel) and f12
more concentrated near 0 than fi; (smaller effect sizes in
second panel)
» So merging these two data sets will result in larger local fdr at
given z and higher Fdr for set Z than analyzing only the first set
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Summary / Preview

» Local fdr is the probability the null is true given the test
statistic (or p—value).
» In practice, can combine FDR with local fdr
> Report all hypotheses with FDR < 0.1
» For these hypotheses, report fdr
» Thus far we have assumed null distribution f; is known
» When testing 1000s of hypotheses, can estimate f; from
distribution of test statistics
» Chapter 6 in Efron, cover on Tuesday
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