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Announcements
I HW 8: Due today at 5:00pm, email TA Scott Liang at

ricestat533@gmail.com

I HW 9: Due April 23 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

I Lectures: Today, April 21, April 23

I Take home exam (similar format to Exams 1 and 2)

I Lecture Format

I Slides (plots / analyses in R)
I .pdf and .R available on course website

I Lecture Structure

I Microphones are muted when you enter the class.
I But please ask questions, remember to unmute / mute
I Let me know about audio issues (chat window or email if I am

not responding)
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Two Group Model

I Hypotheses H01, . . . ,H0N
I π0 = proportion of true nulls
I π1 = 1− π0 = proportion of true alternatives
I yi is indicator H1i is true

I yi ∼ Bernoulli(π1)
I zi (or pi) drawn from distribution:

f0(z) if yi = 0 (i.e. H0i is true)

f1(z) if yi = 1 (i.e. H1i is true)

I The marginal distribution of zi is

f(z) = π0f0(z) + π1f1(z)
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Local Fdr

I The local Fdr is

fdr(z) ≡ P (y = 0|z) = π0f0(z)
f(z)

I It is “local” because reports false discovery rate at single point,
rather than over region Z.

I Uses of FDR, Fdr, fdr
I FDR: Report set of p-values and associated FDR q
I Fdr: Report tests in set Z and associated Fdr
I With fdr (local false discovery rate), report fdr(z) for each

hypothesis
I More specifically report estimate f̂dr(z)
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Estimation of fdr

fdr(z) = π0f0(z)
f(z)

I Need estimates of π0 and f(z)
I Discussed estimation of π0 in last lecture
I Now: Discuss estimation of f(z)

I Sample z1, . . . , zn ∼ f
I So this is a density estimation problem
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Kernel Density Estimation

I Kernel density estimate

f̂(z) = 1
hN

N∑
i=1

K

(
z − zi
h

)
I K is the kernel function (often standard normal density)
I h is the bandwidth, controls how smooth density estimate is
I Usually: h estimated from the data to obtain appropriately

smooth estimate
I If h is very large K

(
z−zi

h

)
≈ 1/

√
2π for z in range of zi. Then

density will be constant over range of zi

I If h is very small K
(

z−zi

h

)
≈ 0 at z 6= zi. So density estimate

will be point masses at zi.
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Prostate Data
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Histogram of the prostate cancer z statistics.
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Prostate KDE Estimate of f
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Reasonable bandwidth.
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Prostate Local fdr with KDE
Using h = 0.173 compute:

f̂dr(z) = π̂f0(z)
f̂(z)
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I Probably too wiggly.
I Could try increasing bandwidth
I Or use a different density estimation method.
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Flexible MLE Density Estimation
I f(z) = e

∑J

j=0 βjz
j

, J controls flexibility of model
I f(z) > 0
I β0 chosen to normalize density

β0 = − log
∫ ∞
−∞

e
∑J

j=1 βjz
j

dz

I Estimate β1, . . . , βJ via MLE

β̂ = argmax
β

N∏
i=1

e
∑J

j=0 βjz
j
i

I Efron approximates MLE using Poisson regression
I Partition space of test statistics into equal width bins
Z = ∪K

k=1Zk

I xk = center of bin Zk

I yk =
∑

1zi∈Zk

I yk ∼iid Poisson(νk) where log(νk) =
∑J

j=0 βjx
j
k
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Prostate f̂ with Poisson Regression J = 7
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f̂dr(z) = π̂0φ(z)
f̂(z)
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Prostate Local fdr with Poisson Regression
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Local fdr fairly symmetric about 0.
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Local fdr versus Fdr
I Let ZR = (z,∞) and

FdrR(ZR) = π̂0(1− Φ(z))
N−1∑N

i=1 1zi>z
I Let ZL = (−∞, z) and

FdrL(ZR) = π̂0Φ(z)
N−1∑N

i=1 1zi<z
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Note that at given z, Fdr always less than local fdr.
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DTI Local fdr with Poisson Regression
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DTI z–statistics contain substantial asymmetry. More signal on the
right.
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DTI Local fdr with Poisson Regression
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Almost no signal on the left.
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Kidney Cancer p–values

I For each gene, associate expression level with survival time in
Cox model

I Obtain ∼ 1000 p-values
I Goal: Estimate local fdr at each p–value

0

100

200

300

0.00 0.25 0.50 0.75 1.00
p−value

C
ou

nt

19



Mixture Model

pi are drawn from

f(p) = L f0(p)︸ ︷︷ ︸
Unif[0,1]

+(1− L) f1(p)︸ ︷︷ ︸
Beta(α,1)
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Beta(0.3,1)

Proposed in (Pounds, Stan, and Stephan W Morris. 2003) Bioinformatics.
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π0 Estimate

I Recall Beta(α, 1) density is:

f(p|α) = pα−1

B(α, 1)

I Since α < 1 for modeling p–value distributions, f(p|α)
decreasing in p

I f(1|α) = α
I So there is an additional α uniform component which can be

removed from Beta(α, 1)
I So can define:

π0 = L+ (1− L)α
I Assumption: p-value density under Ha is 0 at p = 1
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BUM Model Local fdr
I L̂ and α̂ are MLEs of L and α
I π̂0 = L̂+ (1− L̂)α̂
I

f̂dr(p) = π̂0f0(p)
f̂(p)

= π̂0

L̂+ (1− L̂) pα̂−1

B(α̂,1)
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Fdr/fdr Asymptotics in N
Question: Assuming two group model, as N increases, how do
inferences for hypothesis H0i with z-statistic z change?

I Local fdr:

f̂dr(z) = π̂0f0(z)
f̂(z)

As N increases, variance of estimates π̂0 and f̂ decrease. But
should not dramatically change f̂dr(z) (supposing original N
reasonably large).

I Fdr: Bayesian False Discovery Rate of region Z is

Fdr(Z) = π̂0F0(Z)
F̂ (Z)

If z ∈ Z will continue (as N increases) to reject H0i and
Fdr(Z) will converge to Fdr(Z)

Message: Assuming two group model, do not pay a penalty for
larger N for Fdr, local fdr, and FDR. In fact, larger N helpful
because estimators have smaller variance. 24



Bonferroni Asymptotics in N

I p = 1− F0(z) (right sided p-value)
I Bonferroni rejects if

p <
α

N

I So increasing N may change rejection decision.
I Rejection threshold converging to 0 rather than any fixed

quantity.
I Similar story for Holm / Hochberg (exercise 5.6 in textbook)
I This is general problem with FWER control procedures.
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Two Group Model Violations

Question: If Fdr/fdr/FDR do not pay price for larger N (in fact
estimators have smaller variance), why not just throw all possible
hypotheses together from all sorts of experiments?

I Result: Violation of Assumptions of 2-group model
I Example:

I N1 = 1000 gene panel of genes thought to be associated with
cancer

I Two group model parameters: π01, f11
I About N2 = 20000 genes in second panel, not known to be

associated with cancer
I Two group model parameters: π02, f12

I Very likely π02 > π01 (more true nulls in second panel) and f12
more concentrated near 0 than f11 (smaller effect sizes in
second panel)

I So merging these two data sets will result in larger local fdr at
given z and higher Fdr for set Z than analyzing only the first set
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Summary / Preview

I Local fdr is the probability the null is true given the test
statistic (or p–value).

I In practice, can combine FDR with local fdr
I Report all hypotheses with FDR < 0.1
I For these hypotheses, report f̂dr

I Thus far we have assumed null distribution f0 is known
I When testing 1000s of hypotheses, can estimate f0 from

distribution of test statistics
I Chapter 6 in Efron, cover on Tuesday
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