Local False Discovery Rate

James Long jplong@mdanderson.org Rice STAT 533 / GSBS 1283

April 16, 2020

Announcements

- HW 8: Due today at 5:00pm, email TA Scott Liang at ricestat533@gmail.com
- HW 9: Due April 23 at 5:00pm, email TA Scott Liang at ricestat533@gmail.com
- Lectures: Today, April 21, April 23
- Take home exam (similar format to Exams 1 and 2)
- Lecture Format
 - Slides (plots / analyses in R)
 - .pdf and .R available on course website
- Lecture Structure
 - Microphones are muted when you enter the class.
 - But please ask questions, remember to unmute / mute
 - Let me know about audio issues (chat window or email if I am not responding)

Local False Discovery Rate (fdr)

Local fdr with Mixture Models

Fdr versus FWER Scaling

Outline

Local False Discovery Rate (fdr)

Local fdr with Mixture Models

Fdr versus FWER Scaling

Two Group Model

$$f_0(z)$$
 if $y_i = 0$ (i.e. H_{0i} is true)
 $f_1(z)$ if $y_i = 1$ (i.e. H_{1i} is true)

• The marginal distribution of z_i is

$$f(z) = \pi_0 f_0(z) + \pi_1 f_1(z)$$

Local Fdr

The local Fdr is

$$\mathrm{fdr}(z)\equiv P(y=0|z)=\frac{\pi_0f_0(z)}{f(z)}$$

- It is "local" because reports false discovery rate at single point, rather than over region Z.
- Uses of FDR, Fdr, fdr
 - FDR: Report set of p-values and associated FDR q
 - Fdr: Report tests in set Z and associated Fdr
 - With fdr (local false discovery rate), report fdr(z) for each hypothesis
 - More specifically report estimate $\widehat{\mathsf{fdr}}(z)$

Estimation of fdr

$$\mathsf{fdr}(z) = \frac{\pi_0 f_0(z)}{f(z)}$$

- ▶ Need estimates of π_0 and f(z)
- Discussed estimation of π_0 in last lecture
- **Now:** Discuss estimation of f(z)
 - Sample $z_1, \ldots, z_n \sim f$
 - So this is a density estimation problem

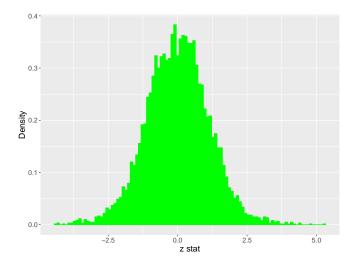
Kernel Density Estimation

Kernel density estimate

$$\widehat{f}(z) = \frac{1}{hN} \sum_{i=1}^{N} K\left(\frac{z-z_i}{h}\right)$$

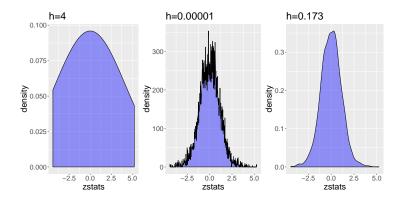
- ▶ *K* is the kernel function (often standard normal density)
- *h* is the bandwidth, controls how smooth density estimate is
 Usually: *h* estimated from the data to obtain appropriately smooth estimate
 - If h is very large K (^{z−z_i}/_h) ≈ 1/√2π for z in range of z_i. Then density will be constant over range of z_i
 - If h is very small K (^{z-z_i}/_h) ≈ 0 at z ≠ z_i. So density estimate will be point masses at z_i.

Prostate Data



Histogram of the prostate cancer z statistics.

Prostate KDE Estimate of f

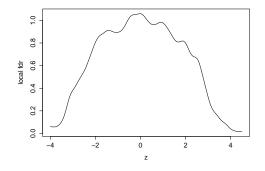


Left) Bandwidth too large Center) Bandwidth too small Right) Reasonable bandwidth.

Prostate Local fdr with KDE

Using h = 0.173 compute:

$$\widehat{fdr}(z) = \frac{\widehat{\pi}f_0(z)}{\widehat{f}(z)}$$



- Probably too wiggly.
- Could try increasing bandwidth
- Or use a different density estimation method.

Flexible MLE Density Estimation

• $f(z) = e^{\sum_{j=0}^{J} \beta_j z^j}$, J controls flexibility of model • f(z) > 0

• β_0 chosen to normalize density

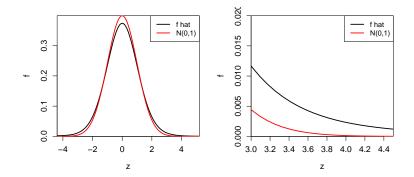
$$\beta_0 = -\log \int_{-\infty}^{\infty} e^{\sum_{j=1}^J \beta_j z^j} dz$$

• Estimate β_1, \ldots, β_J via MLE

$$\widehat{\beta} = \operatorname*{argmax}_{\beta} \prod_{i=1}^{N} e^{\sum_{j=0}^{J} \beta_j z_i^j}$$

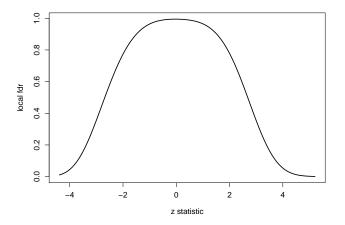
Efron approximates MLE using Poisson regression
Partition space of test statistics into equal width bins Z = ∪_{k=1}^KZ_k
x_k = center of bin Z_k
y_k = ∑1_{zi∈Zk}
y_k ∼_{iid} Poisson(ν_k) where log(ν_k) = ∑_{j=0}^J β_jx_k^j

Prostate \hat{f} with Poisson Regression J = 7



$$\widehat{\mathsf{fdr}}(z) = \frac{\widehat{\pi}_0 \phi(z)}{\widehat{f}(z)}$$

Prostate Local fdr with Poisson Regression



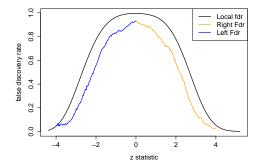
Local fdr fairly symmetric about 0.

Local fdr versus Fdr Let $Z_R = (z, \infty)$ and

$$\overline{\mathsf{Fdr}}_R(\mathcal{Z}_R) = \frac{\widehat{\pi}_0(1 - \Phi(z))}{N^{-1}\sum_{i=1}^N 1_{z_i > z_i}}$$

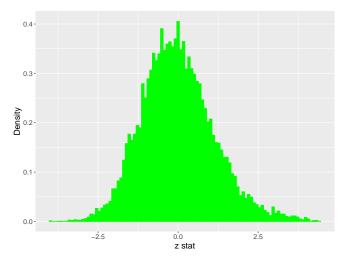
• Let $\mathcal{Z}_L = (-\infty, z)$ and

$$\overline{\mathsf{Fdr}}_L(\mathcal{Z}_R) = \frac{\widehat{\pi}_0 \Phi(z)}{N^{-1} \sum_{i=1}^N \mathbf{1}_{z_i < z}}$$



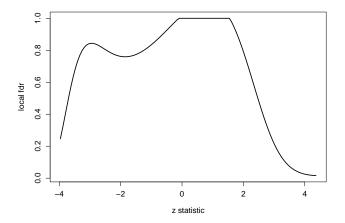
Note that at given z, Fdr always less than local fdr.

DTI Local fdr with Poisson Regression



DTI z-statistics contain substantial asymmetry. More signal on the right.

DTI Local fdr with Poisson Regression



Almost no signal on the left.

Outline

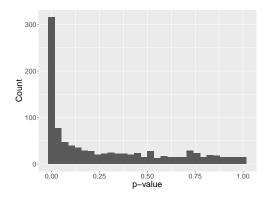
Local False Discovery Rate (fdr)

Local fdr with Mixture Models

Fdr versus FWER Scaling

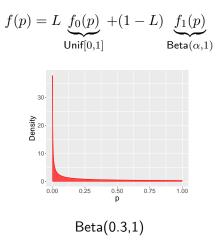
Kidney Cancer p-values

- For each gene, associate expression level with survival time in Cox model
- ▶ Obtain ~ 1000 p-values
- ► Goal: Estimate local fdr at each p-value



Mixture Model

 p_i are drawn from



Proposed in (Pounds, Stan, and Stephan W Morris. 2003) Bioinformatics.

π_0 Estimate

• Recall Beta $(\alpha, 1)$ density is:

$$f(p|\alpha) = \frac{p^{\alpha-1}}{B(\alpha,1)}$$

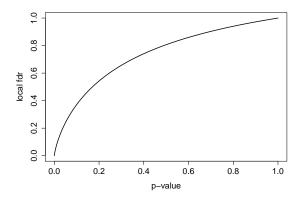
- \blacktriangleright Since $\alpha < 1$ for modeling p–value distributions, $f(p|\alpha)$ decreasing in p
- $\blacktriangleright \ f(1|\alpha) = \alpha$
- \blacktriangleright So there is an additional α uniform component which can be removed from ${\rm Beta}(\alpha,1)$
- So can define:

$$\pi_0 = L + (1 - L)\alpha$$

Assumption: p-value density under H_a is 0 at p = 1

BUM Model Local fdr

$$\widehat{L}$$
 and $\widehat{\alpha}$ are MLEs of L and α
 $\widehat{\pi}_0 = \widehat{L} + (1 - \widehat{L})\widehat{\alpha}$
 $\widehat{\mathsf{fdr}}(p) = \frac{\widehat{\pi}_0 f_0(p)}{\widehat{f}(p)} = \frac{\widehat{\pi}_0}{\widehat{L} + (1 - \widehat{L})\frac{p^{\widehat{\alpha} - 1}}{B(\widehat{\alpha}, 1)}}$



Outline

Local False Discovery Rate (fdr)

Local fdr with Mixture Models

Fdr versus FWER Scaling

Fdr/fdr Asymptotics in N

<u>Question</u>: Assuming two group model, as N increases, how do inferences for hypothesis H_{0i} with z-statistic z change?

Local fdr:

$$\widehat{\mathsf{fdr}}(z) = \frac{\widehat{\pi}_0 f_0(z)}{\widehat{f}(z)}$$

As N increases, variance of estimates $\hat{\pi}_0$ and \hat{f} decrease. But should not dramatically change $\widehat{\operatorname{fdr}}(z)$ (supposing original N reasonably large).

• <u>Fdr:</u> Bayesian False Discovery Rate of region \mathcal{Z} is

$$\overline{\mathrm{Fdr}}(\mathcal{Z}) = \frac{\widehat{\pi}_0 F_0(\mathcal{Z})}{\widehat{F}(\mathcal{Z})}$$

If $z \in \mathcal{Z}$ will continue (as N increases) to reject H_{0i} and $\overline{\mathsf{Fdr}}(\mathcal{Z})$ will converge to $\mathsf{Fdr}(\mathcal{Z})$

<u>Message</u>: Assuming two group model, do not pay a penalty for larger N for Fdr, local fdr, and FDR. In fact, larger N helpful because estimators have smaller variance.

Bonferroni Asymptotics in ${\cal N}$

•
$$p = 1 - F_0(z)$$
 (right sided p-value)

Bonferroni rejects if

$$p < \frac{\alpha}{N}$$

- So increasing N may change rejection decision.
- Rejection threshold converging to 0 rather than any fixed quantity.
- Similar story for Holm / Hochberg (exercise 5.6 in textbook)
- This is general problem with FWER control procedures.

Two Group Model Violations

<u>Question</u>: If Fdr/fdr/FDR do not pay price for larger N (in fact estimators have smaller variance), why not just throw all possible hypotheses together from all sorts of experiments?

- ▶ Result: Violation of Assumptions of 2-group model
- Example:
 - $\blacktriangleright~\dot{N}_1 = 1000$ gene panel of genes thought to be associated with cancer
 - Two group model parameters: π_{01} , f_{11}
 - \blacktriangleright About $N_2=20000$ genes in second panel, not known to be associated with cancer

• Two group model parameters: π_{02} , f_{12}

- Very likely π₀₂ > π₀₁ (more true nulls in second panel) and f₁₂ more concentrated near 0 than f₁₁ (smaller effect sizes in second panel)
- So merging these two data sets will result in larger local fdr at given z and higher Fdr for set Z than analyzing only the first set

Summary / Preview

- Local fdr is the probability the null is true given the test statistic (or p-value).
- In practice, can combine FDR with local fdr
 - Report all hypotheses with FDR < 0.1</p>
 - For these hypotheses, report fdr
- Thus far we have assumed null distribution f_0 is known
 - When testing 1000s of hypotheses, can estimate f₀ from distribution of test statistics
 - Chapter 6 in Efron, cover on Tuesday