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Announcements

I HW 9: Due April 23 at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

I Lectures: Today, April 23

I Take home exam

I Assigned on Thursday April 23
I Due April 29 at 5:00pm
I Similar structure to Exams 1 and 2
I Same policies as Exam 2
I Strong focus on content in Efron, last third of course

I Lecture Format

I Slides (plots / analyses in R)
I .pdf and .R available on course website
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Two Group Model

I Hypotheses H01, . . . ,H0N

I π0 = proportion of true nulls
I π1 = 1− π0 = proportion of true alternatives
I yi is indicator H1i is true

I yi ∼ Bernoulli(π1)
I zi (or pi) drawn from distribution:

f0(z) if yi = 0 (i.e. H0i is true)

f1(z) if yi = 1 (i.e. H1i is true)

I The marginal distribution of zi is

f(z) = π0f0(z) + π1f1(z)

5



Theoretical Null Distribution

I Null distribution is f0 (or F0)
I Theoretical distribution determined by model:

I Xi1, . . . , Xin ∼iid N(µ, σ2) (the model)
I H0i : µ = 0
I ti = X̄/(s/

√
n)

I Theoretical null distribution for ti is Tn−1
I zi = Φ−1(FTn−1(ti)) where FTn−1 is Tn−1 cdf
I Theoretical null distribution for zi is N(0, 1) (prefer working

with test statistics with N(0, 1) null)
I Null distribution necessary for Fdr and local fdr calculations

I Fdr(Z) = π̂0F0(Z)
N−1

∑N

i=1
1zi∈Z

I fdr(z) = π̂0f0(z)
f̂(z)

I Thus far, we have assumed the theoretical null is true
I If the model is not a sufficiently good approximation,

then the inferences drawn from Fdr(Z) and fdr(z) may be
misleading
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Leukemia Data

I 72 patients with leukemia
I 47 with ALL (acute lymphoblastic leukemia)
I 25 with AML (acute myeloid leukemia)

I Xij is expression of gene i for patient j
I Normalize expression values

xij = Φ−1
(

rank(Xij)− 0.5
N

)
where rank(Xij) is rank of Xij among X1j , . . . , XNj .
Removes extreme outliers.

I Two sample t-tests on xij for i = 1, . . . , 7128
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z-statistic Distribution: Theoretical Null is Suspect
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I Mean shifted positive
I Highly overdispersed relative to N(0, 1)
I Two interpretations:

I Many true alternatives, i.e. π0 < 0.75 (these do not have to
follow null)

I Theoretical N(0, 1) is false
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Estimate π0

I Estimate π0 with Null Region Only Method

π̂0 = N−1∑N
i=1 1zi∈A0

F0(A0)

I A0 = [Φ−1(0.25),Φ−1(0.75)] = [−0.67, 0.67]
I So

π̂0 = N−1∑N
i=1 1zi∈A0

0.5 ≈ 0.593
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Local fdr
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Estimate f with Efron flexible exponential model.

f̂dr(z) = π̂0φ(z)
f̂(z)
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Local fdr
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1539 genes with f̂dr < 0.2
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Summary of Results

I π̂0 ≈ 0.59 suspiciously low (requires some knowledge about
microarrays and cancer to make this determination)

I 1539 genes with f̂dr < 0.2 is a lot
I Calculations quite sensitive to f0 (see more later)
I I get somewhat discrepant results from Efron here

I Efron get π̂0 ≈ 0.65
I Data may be slightly different, sample sizes do not match
I I use mixture of my own code and Efron’s locfdr package (on

CRAN)
I Now: Discuss how / why theoretical f0 may not be correct

null distribution
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Group Distributions

I Leukemia test statistics based on two-sample t-tests
I If AML and ALL not normally distributed, then test statistics

may not follow t
I Quality of normal approximation:

I If both ALL and AML large, then test statistic is approx N(0, 1)
regardless of AML/ALL population distributions based on CLT

I Transform original data to remove outliers
I Challenges:

I 25 AML cases, so CLT based normality may not hold
I Difficult to find transformation that will work for all genes,

recall there are 7128 t-tests
I For other models, checking assumptions / improving models

even more difficult:
I Example: Kidney cancer survival Computed test-statistics /

p-values using Cox proportional hazards model. Assessing model
assumptions / performing transformations with Cox is more
difficult than two-sample t-tests
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Independence

I Most test statistics assume n independent samples
I For example in two-group t-test xij are independent across j
I Possible causes of violation in Assumption

I Matched pairs of patients collected in each group (age, sex,
disease progression, etc.)

I Samples processed in batches. For example xi1, . . . , xik and
xi,k+1, . . . , xi,n had expression measured on separate trays.

I Many efforts to remove batch effects, but not always successful.
I With very poor design, e.g. running all ALL patients in one

batch and all AML patients on a second, can completely
confound disease and batch effect.
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Covariates

I Often collect observational data
I ALL and AML samples not randomized units that were treated

with ALL and AML
I Systematic differences in covariates between groups: age, sex,

treatments, race, etc.
I Shifts in covariates may cause changes in expression, not

related to disease type
I Example:

I Gene i expression increases with age (all cells)
I AML patients systematically older than ALL patients
I Then gene i expression in AML tissue higher than in ALL tissue
I But differential expression not caused by cancer
I Healthy tissue from AML patients would have higher gene i

expression than healthy tissue from ALL
I Tricky Issue: Standard null is wrong for gene i, but not wrong

for the reason we care about. Issues related to causal inference.
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Fixing the Model
Best solution: Fix model for computing test statistics

I Use test statistics which do not require normality, e.g.
Wilcoxon tests instead of t–tests

I Incorporate dependence, e.g. paired t-tests
I Use covariates in model fitting

I Standard t-test (test statistic computed from αi):

xij = µ+ γj︸︷︷︸
j treat.=0,1

treat.
effect on i︷︸︸︷
αi + εij

I Model with covariates:

xij = µ+ zTj︸︷︷︸
covariates

for j

covariate
effect

on gene i︷︸︸︷
βi + γj︸︷︷︸

j treat.=0,1

treat.
effect on i︷︸︸︷
αi + εij
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Fixing the Model Not Always Feasible

I Only test statistics are available, not gene expression values or
covariates

I Computation: More sophisticated models require more
computation time

I Division of labor / scientific expertise: Determining appropriate
normalization strategies / statistical models for gene expression
may involve digging deeply into software pipelines and
biological questions about which we have little expertise
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Setup

Assumptions:

1. f0 follows a (possibly non–standard) normal:

f0(z) ∼ N(δ0, σ
2
0)

2. f1(z) = 0 for z ∈ A0 (Null only region assumption)

Goal: Estimate π0, δ0, σ2
0 and redo Fdr / local fdr calculations with

estimated f0.

Note: Assumptions are only approximations. May want to consider
this as a sensitivity analysis exercise, i.e. How much do results
change if consider non N(0, 1) null distribution?
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Estimation

Idea:

I Use only zi in A0 to estimate δ0,σ2
0.

I Use fraction of data in A0 to estimate π0

Notation:

I Define

ri =
{

1 zi ∈ A0

0 o.w.

z′i =
{
zi zi ∈ A0

−∞ o.w.

I Data is (ri, z
′
i) pairs

I −∞ could be any value
I NA0 =

∑
ri (number of zi in A0)

I zi outside A0 are “censored”
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Likelihood Function
I p((ri, z

′
i)) = p(z′i|ri)p(ri)

I p(ri)
I ri ∼ Bern(π0H(δ0, σ

2
0)︸ ︷︷ ︸

≡θ

)

I H(δ0, σ
2
0) =

∫
A0
φ(z; δ0, σ

2
0)dz

I p(z′i|ri)
I Case ri = 0:

p(z′i|ri = 0) =
{

1 z′i = −∞
0 o.w.

I Case ri = 1:

p(z′i|ri = 1) = φ(z′i; δ0, σ
2
0)

H(δ0, σ2
0)

I Assuming i.i.d. test statistics likelihood is:

N∏
i=1

p((ri, z
′
i)) =

(
N

NA0

)
θNA0 (1−θ)N−NA0

∏
{i:zi∈A0}

φ(z′i; δ0, σ
2
0)

H(δ0, σ2
0)
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Notes on Likelihood

I This is censored likelihood common in survival analysis:
I zi outside A0 are treated as censored.
I Replaced with placeholder −∞
I ri is indicator for censoring (1=not censored)

I Log likelihood is concave so MLE is unique
I Could attempt to use original data, e.g. in generalization of

BUM / Patra-Sen mixture model:

F (z) = π0Φ
(
z − δ0
σ0

)
+ (1− π0)F1(z)

where Φ is N(0, 1) and parameters are σ0, δ0, F1
I Disadvantage: Requires parametric assumptions on F1 or

complex procedures to non-parametrically estimate F1.
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Application to Leukemia Data
Estimates: δ̂0 = 0.136, σ̂0 = 1.586, π̂0 = 0.915
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Theo. Null
Emp. Null

Number of hypotheses with local f̂dr < 0.2:

I Theoretical null: 1501
I Empirical null: 244

Estimating null from data makes a huge difference!
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Application to Leukemia Data

I Permutation tests can be used to approximate null distribution
I Randomly permute AML / ALL labels.
I Compute test statistics.
I Use resulting distribution as empirical null.
I Protects against t-statistic normality assumption.
I Does not have any effect for Leukemia data (permutation null

distribution is approx N(0, 1))
I Leukemia theoretical null violation likely due to hidden

covariates.
I Many genes show small levels of differential expression which

are caused by covariates rather than AML/ALL.
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Summary / Preview
I Poor theoretical null can greatly change inferences
I Modeling f0 requires assumptions:

I f0 belongs to normal family, Null Only Region near 0
I Rather than believing the results, can consider modeling f0 as a

type of sensitivity analysis
I Efron suggests that covariates may be biggest problem in

causing theoretical null not to hold
I On Thursday Chapter 7: Estimation accuracy of f̂dr under

dependence
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