Estimation Accuracy in Multiple Testing Problems

James Long jplong@mdanderson.org Rice STAT 533 / GSBS 1283

April 23, 2020

Announcements

- HW 9: Due today at 5:00pm, email TA Scott Liang at ricestat533@gmail.com
- Lectures: Today is final class
- Take home exam
 - Send out tomorrow
 - Due April 29 at 5:00pm (if you need more time, let me know)
 - Similar structure to Exams 1 and 2
 - Same policies as Exam 2
 - Strong focus on content in Efron, last third of course
- Lecture Format
 - Slides (plots / analyses in R)
 - .pdf and .R available on course website

Simulation

Correlation in Test Statistics

Data Examples

Two Group Model

$$f_0(z)$$
 if $y_i = 0$ (i.e. H_{0i} is true)
 $f_1(z)$ if $y_i = 1$ (i.e. H_{1i} is true)

• The marginal distribution of z_i is

$$f(z) = \pi_0 f_0(z) + \pi_1 f_1(z)$$

Outline

Simulation

Correlation in Test Statistics

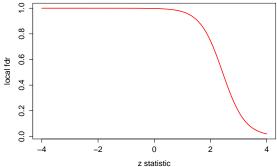
Data Examples

Simulation

•
$$\pi_0 = 0.95$$

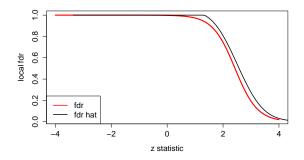
• $f_0 = N(0, 1)$
• $f_1 = N(2.5, 1)$
• Then

$$\mathsf{fdr}(z) = \frac{\pi_0 f_0(z)}{f(z)} = \frac{\pi_0 \phi(z)}{\pi_0 \phi(z) + (1 - \pi_0)\phi(z - 2.5)}$$



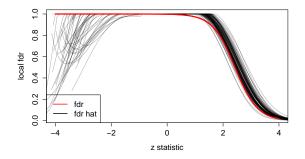
Generate Data from Model

- Generate N = 6000 z-statistics from model assuming independent test statistics
- Compute fdr(z)



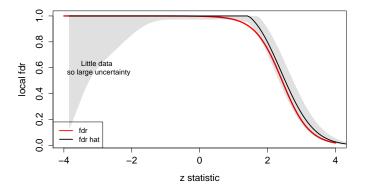
Message: $\widehat{\text{fdr}}(z)$ (black line) is an estimate of the true local fdr (red line).

Run Simulation 100 Times



- Some gross errors on left side.
- But mostly care about uncertainty when fdr(z) < 0.3
- This is an approximation to sampling distribution of fdr which cannot be observed.

Standard Errors



- Black line: $\widehat{fdr}(z)$ from one simulation run
- Grey region: 95% confidence interval (pointwise)
- **Today:** Discuss how to compute these uncertainties.

Dependent z-statistics

Test statistics may be dependent

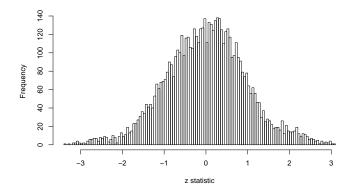
- Genes with similar function will have similar expression
- Test statistics will be similar for these genes
- Correlated Simulation
 - Divide z in J = 60 blocks of length H = N/J
 - For h element in block j

$$z_{hj} = \frac{\gamma U_j + V_{hj}}{(1 + \gamma^2)^{1/2}}$$

where U_i and V_{hi} are N(0,1) all independent

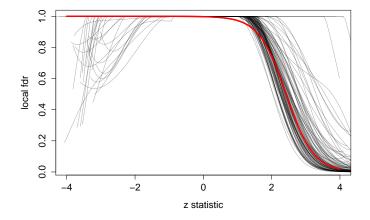
- $\blacktriangleright \ \gamma$ controls degree of correlation
- Let $\rho_{ii'}$ be correlation between z_i and $z_{i'}$
- γ chosen such that $\alpha = \sqrt{M^{-1} \sum \rho_{ii'}^2} = 0.1$ where $M = {N \choose 2}$

Histogram of Test Statistics



Modes may appear near U_j .

Local fdr with Correlated z-statistics



- Larger variance when using correlated test statistics.
- Need methodology which accounts for this.

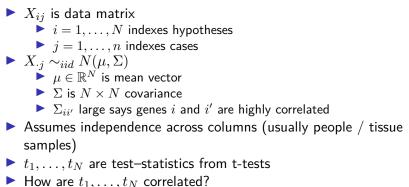
Outline

Simulation

Correlation in Test Statistics

Data Examples

Correlated Data Matrix



From are ι_1, \ldots, ι_N correlated

Theorem 8.5:

$$cor(t_i, t_{i'}) = \rho_{ii'} + O(n^{-1})$$

where $\rho_{ii'}$ is correlation between genes *i* and *i'* (computed from Σ)

Root Mean Square Correlation

$$\blacktriangleright \ \rho_{ii'} = Cor(z_i, z_{i'})$$

Define the root mean square correlation:

$$\alpha = \sqrt{\frac{1}{\binom{N}{2}} \sum_{i < i'} \rho_{ii'}^2}$$

Measure of overall correlation in test statistics

Based on theorem, can estimate from data matrix X

$$\widehat{\alpha} = \sqrt{\frac{1}{\binom{N}{2}} \sum_{i < i'} Cor(X_{i \cdot}, X_{i' \cdot})^2}$$

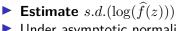
Approach to Estimating local fdr Uncertainty

Estimate uncertainty in

$$\widehat{\mathsf{fdr}}(z) = \frac{\pi_0 f_0(z)}{\widehat{f}(z)}$$

For simplicity (sanity), we assume π_0 and f_0 are known Consider the log local fdr

$$\widehat{\mathsf{lfdr}}(z) = \log(\pi_0) + \log(f_0(z)) - \log(\widehat{f}(z))$$



Under asymptotic normality

$$\left[e^{\widehat{\mathsf{fdr}}(z)-2s.d.(\log(\widehat{f}(z)))}, e^{\widehat{\mathsf{fdr}}(z)+2s.d.(\log(\widehat{f}(z)))}\right]$$

is a 95% CI for $\widehat{fdr}(z)$

Approach to Estimating local fdr Uncertainty

- $\blacktriangleright \ \widehat{f}(z)$ is Efron's Poisson regression estimate based on binned data
- ▶ Let y = (y₁,..., y_K) be counts in equal sized bins spread across test statistic domain
- $Cov(y) = Cov_0(y) + Cov_1(y)$ (Lemma 7.1 in Efron)
 - Cov_0 is multinomial covariance based on independent z_i
 - Cov₁ is covariance resulting from dependence in z_i.
 - Depends on $Cor(z_i, z_{i'}) = \rho_{ii'}$
 - Not directly estimable from z_i and z_{i'} because only have one realization. But can estimate with Cor(X_i., X_{i'}.)
 - Size of Cov_1 depends on root mean square correlation α (7.38 in Efron)
- Express \hat{f} as a smooth functional of y.
- Use delta method to determine $s.d.(\log(\hat{f}(z)))$

$$\widehat{Cov}(\log(\widehat{f})) = \left(\frac{d\log\widehat{f}}{dy}\right)\widehat{Cov}(y)\left(\frac{d\log\widehat{f}}{dy}\right)$$

All terms $K \times K$ matrices.

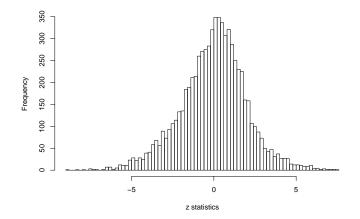
Outline

Simulation

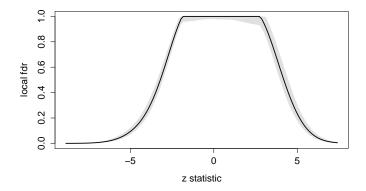
Correlation in Test Statistics

Data Examples

Leukemia Data

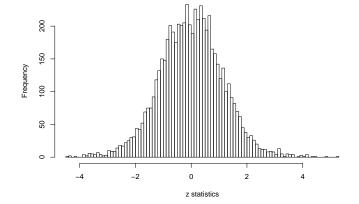


Leukemia Data local fdr with Uncertainties

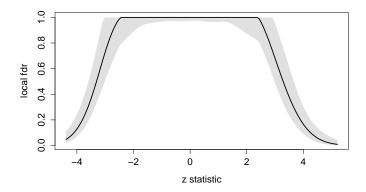


Black line is \widehat{fdr} . Grey region is 95% confidence set.

Prostate Data



Prostate Data local fdr with Uncertainties



Black line is \widehat{fdr} . Grey region is 95% confidence set.

Coding

locfdr package on CRAN does these calculations.

```
> a <- locfdr(zstats,nulltype=1,</pre>
               pct0=c(0.25,0.75),plot=0)
+
> plot(a$mat[,1],a$mat[,2],type='1',
       lwd=2,cex.lab=1.3,cex.axis=1.3,
+
       xlab="z statistic",ylab="local fdr")
+
> ldfr_up <- pmin(exp(log(a$mat[,2]) +</pre>
                          2*a$mat[.10]).1)
+
  ldfr low <- pmin(exp(log(a$mat[,2]) -</pre>
>
                           2*a$mat[.10]).1)
+
  polygon(c(a$mat[,1],rev(a$mat[,1])),
>
           c(ldfr low,rev(ldfr up)),
+
           col="#0000020",border=NA)
+
```

Closing

Reminders:

- HW9 due at 5:00 today
- Exam 3 sent out tomorrow
- ▶ Thank you for sticking with course over tough semester.
- I wish you all best of luck going forward:
 - Stay safe.
 - Follow health guidelines.