Estimation Accuracy in Multiple Testing
Problems

James Long
jplong@mdanderson.org
Rice STAT 533 / GSBS 1283

April 23, 2020


mailto:jplong@mdanderson.org

Announcements

» HW 9: Due today at 5:00pm, email TA Scott Liang at
ricestat533@gmail.com

» Lectures: Today is final class
» Take home exam

» Send out tomorrow

» Due April 29 at 5:00pm (if you need more time, let me know)
» Similar structure to Exams 1 and 2

» Same policies as Exam 2

» Strong focus on content in Efron, last third of course

» Lecture Format

» Slides (plots / analyses in R)
» pdf and .R available on course website


ricestat533@gmail.com
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Two Group Model

Hypotheses Hyq, ..., Hon
mo = proportion of true nulls
w1 = 1 — mg = proportion of true alternatives
y; is indicator Hy; is true
» y; ~ Bernoulli(m)
zi (or p;) drawn from distribution:

vvyy

v

fo(z) if y; =0 (i.e. Hy; is true)
fl(z) ify, =1 (|e Hy; is true)

» The marginal distribution of z; is

f(2) = mofo(2) + mfi(2)
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Simulation



Simulation
> 7 =0.95
> fo=N(0,1)
> fi = N(25,1)
» Then

~ mofolz) mo(2)
fdr(z) = f(z)  mod(z) + (1 —mo)p(z — 2.5)
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local fdr
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Generate Data from Model

» Generate N = 6000 z-statistics from model assuming
independent test statistics
» Compute fdr(z)

local fdr
00 02 04 06 08 1.0

1 — fdr

— fdr hat
T T T T T
-4 -2 0 2 4

Z statistic

Message: f/d\r(z) (black line) is an estimate of the true local fdr
(red line).



Run Simulation 100 Times

1.0

local fdr
0.0 02 04 06 08

Z statistic

» Some gross errors on left side.

» But mostly care about uncertainty when fdr(z) < 0.3

» This is an approximation to sampling distribution of fdr which
cannot be observed.



Standard Errors

1.0

Little data
so large uncertainty

local fdr

— fdr
— fdr hat

00 02 04 06 038

-4 -2 0 2 4

Z statistic

» Black line: f/d\r(z) from one simulation run
» Grey region: 95% confidence interval (pointwise)
> Today: Discuss how to compute these uncertainties.



Dependent z-statistics

P> Test statistics may be dependent

» Genes with similar function will have similar expression

P> Test statistics will be similar for these genes
» Correlated Simulation

» Divide z in J = 60 blocks of length H = N/J
» For h element in block j

_ U+ Vi
ENCEEDRE

where U; and V},; are N(0,1) all independent
» ~ controls degree of correlation

P> Let p;;s be correlation between z; and z;/

> 7 chosen such that o = \/M~13" p2, = 0.1 where M = ()
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Histogram

Frequency
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of Test Statistics

Z statistic

Modes may appear near Uj.
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Local fdr with Correlated z—statistics

1.0

0.8
!

local fdr
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0.4

0.0

-4 -2 0

Z statistic

» Larger variance when using correlated test statistics.
» Need methodology which accounts for this.
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Correlation in Test Statistics
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Correlated Data Matrix

» X;; is data matrix
» i=1,..., N indexes hypotheses
> j=1,...,n indexes cases
> X ~iig N(p, )
» ;€ RY is mean vector
> > is N x N covariance
> 3, large says genes i and i’ are highly correlated

» Assumes independence across columns (usually people / tissue

samples)
» {1,...,tN are test—statistics from t-tests
» How are t,...,tn correlated?
Theorem 8.5:

COT’(ti,ti/) = Py + O(n_l)

where p;; is correlation between genes i and i’ (computed from X)
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Root Mean Square Correlation

» Test statistics z1,...,2N
piir = Cor(zi, zir)
Define the root mean square correlation:

vy

1 2
3] >0

<3/

» Measure of overall correlation in test statistics
Based on theorem, can estimate from data matrix X

v

1
a= Ny Z COT(XZ‘., XZ‘/.)Q

(2) 1<’
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Approach to Estimating local fdr Uncertainty

» Estimate uncertainty in

(s — Wofo(z)
=750

» For simplicity (sanity), we assume 7 and fj are known
» Consider the log local fdr

Ifdr(z) = log(mo) + log(fo(2)) — log(f(2))

~

» Estimate s.d.(log(f(z)))
» Under asymptotic normality

eH:/d\r(z)72s.d.(log(]/”\(z)))7 Ifdr(2)+2s.d.(log(f(2))

is a 95% Cl for fdr(z)
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Approach to Estimating local fdr Uncertainty

~

» f(z) is Efron’s Poisson regression estimate based on binned
data
» Let y = (y1,...,yK) be counts in equal sized bins spread
across test statistic domain
» Cou(y) = Couvp(y) + Covi(y) (Lemma 7.1 in Efron)
» (Covg is multinomial covariance based on independent z;
» Cowy is covariance resulting from dependence in z;.
» Depends on Cor(z;, zy) = pii
> Not directly estimable from z; and z;; because only have one
realization. But can estimate with Cor(X;., X;/.)
» Size of C'ov1 depends on root mean square correlation « (7.38
in Efron)
> Express f as a smooth functional of y.

» Use delta method to determine s.d.(log(f(z)))

Con(log(f) = (C“"gf ) Con(y) (c“ogf )

dy dy

All terms K x K matrices.
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Data Examples
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Leukemia Data
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Leukemia Data local fdr with Uncertainties

local fdr
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Black line is fdr. Grey region is 95% confidence set.
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Prostate Data
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Prostate Data local fdr with Uncertainties

local fdr
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Black line is fdr. Grey region is 95% confidence set.

22



Coding

locfdr package on CRAN does these calculations.

a <- locfdr(zstats,nulltype=1,
pct0=c(0.25,0.75) ,plot=0)
plot(a$mat[,1],a$mat[,2] ,type="1",
lwd=2,cex.lab=1.3,cex.axis=1.3,
xlab="z statistic",ylab="local fdr")
ldfr_up <- pmin(exp(log(a$mat[,2]) +
2*a$mat [,10]),1)
ldfr_low <- pmin(exp(log(a$mat[,2]) -
2*a$mat[,10]),1)
polygon(c(a$mat[,1],rev(a$mat(,1])),
c(1dfr_low,rev(1ldfr_up)),
col="#00000020" ,border=NA)

+ + V +V +V + 4+ V +V
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Closing

» Reminders:
> HWQ9 due at 5:00 today
» Exam 3 sent out tomorrow

» Thank you for sticking with course over tough semester.

» | wish you all best of luck going forward:
» Stay safe.
» Follow health guidelines.
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