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1970 baseball averages
Efron & Morris looked at batting averages of baseball players who
had N = 45 at-bats in May 1970 — ‘large’ N & includes Roberto
Clemente (outlier!)

Red = n/N maximum likelihood estimates of true averages
Blue = Remainder of season, Nrmdr ≈ 9N

'True'

Early season

Shrinkage

RMSE = 0.277

RMSE = 0.148

0.2 0.3 0.4

0.265

Cyan = James-Stein estimator: nonlinear, correlated, biased
But better!
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Lines show closer estimate
Shrinkage closer 15/18

First 45 at-bats

Full season

Shrinkage estimator

Theorem (independent Gaussian setting): In dimension >∼3, shrinkage
estimators always beat independent MLEs in terms of expected RMS error

“The single most striking result of post-World War II statistical theory”
— Brad Efron
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All 18 players are humans playing baseball—they are members of a
population, not arbitrary, unrelated binomial random number
generators!

In the absence of data about player i , we may use the performance
of the other players to guide a guess about that player’s
performance—they provide indirect evidence (Efron) about player i

But information that is relevant in the absence of data for i
remains relevant when we additionally obtain that data; shrinkage
estimators account for this

There is “mustering and borrowing of strength” (Tukey) across the
population

Hierarchical Bayesian modeling is the most flexible framework for
generalizing this lesson; empirical Bayes is an approximate version
with a straightforward frequentist interpretation
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Agenda

1 Basic Bayes recap

2 Key idea in a nutshell

3 Going deeper
Joint distributions and DAGs
Conditional dependence/indepence
Example: Binomial prediction
Beta-binomial model
Point estimation and shrinkage
Gamma-Poisson model & Stan
Algorithms
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Bayesian inference in one slide
Probability as generalized logic

Probability quantifies the strength of arguments

To appraise hypotheses, calculate probabilities for arguments
from data and modeling assumptions to each hypothesis

Use all of probability theory for this

Bayes’s theorem

p(Hypothesis | Data) ∝ p(Hypothesis)× p(Data | Hypothesis)

Data change the support for a hypothesis ∝ ability of
hypothesis to predict the data

Law of total probability

p(Hypotheses | Data) =
∑

p(Hypothesis | Data)

The support for a compound/composite hypothesis must
account for all the ways it could be true
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Bayes’s theorem
C = context, initial set of premises

Consider P(Hi ,Dobs|C) using the product rule:

P(Hi ,Dobs|C) = P(Hi |C)P(Dobs|Hi , C)

= P(Dobs|C)P(Hi |Dobs, C)

Solve for the posterior probability (expands the premises!):

P(Hi |Dobs, C) = P(Hi |C)
P(Dobs|Hi , C)

P(Dobs|C)

Theorem holds for any propositions, but for hypotheses & data the
factors have names:

posterior ∝ prior × likelihood

norm. const. P(Dobs|C) = prior predictive
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Law of Total Probability (LTP)
Consider exclusive, exhaustive {Bi} (C asserts one of them must
be true),

∑

i

P(A,Bi |C) =
∑

i

P(Bi |A, C)P(A|C) = P(A|C)

=
∑

i

P(Bi |C)P(A|Bi , C)

If we do not see how to get P(A|P) directly, we can find a set
{Bi} and use it as a “basis”—extend the conversation:

P(A|C) =
∑

i

P(Bi |C)P(A|Bi , C)

If our problem already has Bi in it, we can use LTP to get P(A|C)
from the joint probabilities—marginalization:

P(A|C) =
∑

i

P(A,Bi |C)
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Example: Take A = Dobs, Bi = Hi ; then

P(Dobs|C) =
∑

i

P(Dobs,Hi |C)

=
∑

i

P(Hi |C)P(Dobs|Hi , C)

prior predictive for Dobs = Average likelihood for Hi

(a.k.a. marginal likelihood)
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Parameter Estimation

Problem statement

C = Model M with parameters θ (+ any add’l info)

Hi = statements about θ; e.g. “θ ∈ [2.5, 3.5],” or “θ > 0”

Probability for any such statement can be found using a
probability density function (PDF) for θ:

P(θ ∈ [θ, θ + dθ]| · · · ) = f (θ)dθ

= p(θ| · · · )dθ

Posterior probability density

p(θ|D,M) =
p(θ|M) L(θ)∫
dθ p(θ|M) L(θ)
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Summaries of posterior

• “Best fit” values:

I Mode, θ̂, maximizes p(θ|D,M)
I Posterior mean, 〈θ〉 =

∫
dθ θ p(θ|D,M)

• Uncertainties:

I Credible region ∆ of probability C :
C = P(θ ∈ ∆|D,M) =

∫
∆
dθ p(θ|D,M)

Highest Posterior Density (HPD) region has p(θ|D,M) higher
inside than outside

I Posterior standard deviation, variance, covariances

• Marginal distributions

I Interesting parameters φ, nuisance parameters η
I Marginal dist’n for φ: p(φ|D,M) =

∫
dη p(φ, η|D,M)
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Many Roles for Marginalization
Eliminate nuisance parameters

p(φ|D,M) =

∫
dη p(φ, η|D,M)

Propagate uncertainty

Model has parameters θ; what can we infer about F = f (θ)?

p(F |D,M) =

∫
dθ p(F , θ|D,M) =

∫
dθ p(θ|D,M) p(F |θ,M)

=

∫
dθ p(θ|D,M) δ[F − f (θ)] [single-valued case]

Prediction

Given a model with parameters θ and present data D, predict future

data D ′ (e.g., for experimental design):

p(D ′|D,M) =

∫
dθ p(D ′, θ|D,M) =

∫
dθ p(θ|D,M) p(D ′|θ,M)

12 / 51



Model comparison

Marginal likelihood for model Mi :

Zi ≡ p(D|Mi ) =

∫
dθi p(θi |M)Li (θi )

Bayes factor Bij ≡ Zi/Zj

Can write Zi = Li (θ̂i ) · Ωi with Ockham factor

Ωi ≈ δθ/∆θ = (posterior volume)/(prior volume)

Hierarchical modeling, aka. . .

• Graphical models — Hierarchical and other structures
• Multilevel models — In regression, linear model settings
• Bayesian networks (Bayes nets) — In AI/ML settings
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3 Going deeper
Joint distributions and DAGs
Conditional dependence/indepence
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Algorithms
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Motivation: Measurement error in surveys
BATSE GRB peak flux estimates

• Selection effects (truncation, censoring) — obvious (usually)
Typically treated by “correcting” data
Most sophisticated: product-limit estimators

• “Scatter” effects (measurement error, etc.) — insidious
Typically ignored (average out??? — No!)
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Accounting For Measurement Error

Suppose f (x |θ) is a distribution for an observable, x (scalar or vector,
~x = (x , y , . . .)); and θ is unknown

From N precisely measured samples, {xi}, we can infer θ from

L(θ) ≡ p({xi}|θ) =
∏

i

f (xi |θ)

p(θ|{xi}) ∝ p(θ)L(θ) = p(θ, {xi})

16 / 51



But what if the x data are noisy, Di = {xi + εi}?

{xi} are now uncertain (latent/hidden/incidental) parameters

We should somehow incorporate `i (xi ) = p(Di |xi )

The joint PDF for everything is

p(θ, {xi}, {Di}) = p(θ) p({xi}|θ) p({Di}|{xi})
= p(θ)

∏

i

f (xi |θ) `i (xi )

The conditional (posterior) PDF for the unknowns is

p(θ, {xi}|{Di}) =
p(θ, {xi}, {Di})

p({Di})
∝ p(θ, {xi}, {Di})
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p(θ, {xi}|{Di}) ∝ p(θ, {xi}, {Di})
= p(θ)

∏

i

f (xi |θ) `i (xi )

Marginalize over {xi} to summarize inferences for θ

Marginalize over θ to summarize inferences for {xi}

Key point: Maximizing over xi (i.e., just using best-fit x̂i ) and
integrating over xi can give very different results!

(See Loredo (2004) for tutorial examples)
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To estimate x1:

p(x1|{x2, . . .}) =

∫
dθ p(θ) f (x1|θ) `1(x1)×

N∏

i=2

∫
dxi f (xi |θ) `i (xi )

= `1(x1)

∫
dθ p(θ) f (x1|θ)Lm,1̌(θ)

≈ `1(x1)f (x1|θ̂1̌)

with θ̂1̌ determined by the remaining data

f (x1|θ̂1̌) behaves like a “prior” that shifts the x1 estimate away
from the peak of `1(x1); each member’s prior depends on all of the
rest of the data → shrinkage

[For astronomers: This generalizes the corrections derived by Eddington,
Malmquist and Lutz-Kelker (sans selection effects)]
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Joint and conditional distributions

Bayesian inference is largely about the interplay between joint and
conditional distributions for related quantities

Ex: Bayes’s theorem relating hypotheses and data (||C):

P(Hi |D) =
P(Hi )P(D|Hi )

P(D)
=

P(Hi ,D)

P(D)
=

joint for everything

marginal for knowns

The usual form identifies an available factorization of the joint

Express this via a directed acyclic graph (DAG):

Hi D
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Joint distribution structure as a graph

• Graph = nodes/vertices connected by edges/links

• Circular/square nodes/vertices = a priori uncertain quantities
(gray/square = becomes known as data)

• Directed edges specify conditional dependence

• Absence of an edge indicates conditional independence
→ the most important edges are the missing ones

Hi D

Hi D

OR

P(Hi ,D) = P(Hi )× P(D|Hi )
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p(x , y , z)

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

p(x)p(y|x)p(z|x, y)

p(x)p(z|x)p(y|x, z)

p(y)p(x|y)p(z|y, x)

p(y)p(z|y)p(x|y, z)

p(z)p(x|z)p(y|z, x)

p(z)p(y|z)p(x|z, y)
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Cycles not allowed

x y

z

p(x|z) ⇥ p(y|x) ⇥ p(z|y)?
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Conditional independence
Suppose for the problem at hand z is independent of of x when y
is known:

p(z |x , y) = p(z |y)

“z is conditionally independent of x , given y”: z ⊥⊥ x | y

x y

z

x y

z

p(x) p(y|x) p(z|x, y) p(x) p(y|x) p(z|y)

z ?? x | y

Absence of an edge indicates conditional independence
Missing edges indicate simplification in structure
→ the most important edges are the missing ones
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DAGs with missing edges

x y

z

p(x) p(y|x) p(z|x)

y ?? z | x

z ?? y | x

x y

z

p(x) p(y|x) p(z|y)

z ?? x | y

Conditional independence

Conditional dependence

“Causal chain” “Common cause”

“Common effects”

x y

z

p(x) p(y) p(z|x, y)
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Conditional vs. complete independence

“z is conditionally independent of x , given y”
6=

“z is independent of x”

(Complete) independence between z and x (“z ⊥⊥ x”) would imply:

p(z |x) = p(z) (i.e., not a function of x)

Conditional independence given y (“z ⊥⊥ x | y”) is weaker:

p(z |x) =

∫
dy p(z , y |x)

=

∫
dy p(y |x)p(z |x , y)

=

∫
dy p(y |x)p(z |y) since z ⊥⊥ x | y

Although x drops out of the last factor, x dependence remains in p(y |x)

x does provide information about z , but it only does so through the
information it provides about y (which directly influences z)
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Bayes’s theorem with IID samples
For model with parameters θ predicting data D = {xi} that are IID given
θ:

()
x1 x2 xN xi

✓ ✓

N

p(θ,D) = p(θ)p({xi}|θ) = p(θ)
N∏

i=1

p(xi |θ)

To find the posterior for the unknowns (θ), divide the joint by the
marginal for the knowns ({xi}):

p(θ|{xi}) =
p(θ)

∏N
i=1 p(xi |θ)

p({xi})
with p({xi}) =

∫
dθ p(θ)

N∏

i=1

p(xi |θ)
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Binomial counts

...

... n2 heads in N flips

n1 heads in N flips

Suppose we know n1 and want to predict n2
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Predicting binomial counts — known α

Success probability α → p(n|α) = N!
n!(N−n)!α

n(1− α)N−n ||N

Consider two successive runs of N = 20 trials, known α = 0.5

p(n2|n1, α) = p(n2|α) ||N
n1 and n2 are conditionally independent

0 5 10 15 20
n1

0

5

10

15

20
n

2
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DAG for binomial prediction — known α

↵

n1 n2

p(α, n1, n2) = p(α)p(n1|α)p(n2|α)

p(n2|α, n1) =
p(α, n1, n2)

p(α, n1)

=
p(α)p(n1|α)p(n2|α)

p(α)p(n1|α)
∑

n2
p(n2|α)

= p(n2|α)

Knowing α lets you predict each ni , independently
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Predicting binomial counts — uncertain α
Consider the same setting, but with α uncertain

Outcomes are physically independent, but n1 tells us about α →
outcomes are marginally dependent (see Lec 12 for calculation):

p(n2|n1,N) =

∫
dα p(α, n2|n1,N) =

∫
dα p(α|n1,N) p(n2|α,N)

Flat prior on α

0 5 10 15 20
n1

0

5

10

15

20

n
2

Prior: α = 0.5± 0.1

0 5 10 15 20
n1

0

5

10

15

20

n
2
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DAG for binomial prediction

α

n1 n2

Flow
of

Information

p(α, n1, n2) = p(α)p(n1|α)p(n2|α)

From joint to conditionals:

p(α|n1, n2) =
p(α, n1, n2)

p(n1, n2)
=

p(α)p(n1|α)p(n2|α)∫
dα p(α)p(n1|α)p(n2|α)

p(n2|n1) =

∫
dα p(α, n1, n2)

p(n1)

Observing n1 lets you learn about α
Knowledge of α affects predictions for n2 → dependence on n1
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A population of coins/flippers

Each flipper+coin flips different number of times

• What do we learn about the population of coins—the
distribution of αs?

• How does population membership effect inference for a single
coin’s α?
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n1

θ

↵1 ↵2 ↵N

n2 nN

Population
parameters

Success
probabilities

Data

p(✓, {↵i}, {ni}) = ⇡(✓)
Y

i

p(↵i|✓) p(ni|↵i)

= ⇡(✓)
Y

i

p(↵i|✓) `i(↵i)

Terminology: θ are hyperparameters, π(θ) is the hyperprior
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A simple multilevel model: beta-binomial

Goals:

• Learn a population-level “prior” by pooling data

• Account for population membership in member inferences

Qualitative

n1

θ

↵1 ↵2 ↵N

n2 nN

Population
parameters

Success
probabilities

Data

p(✓, {↵i}, {ni}) = ⇡(✓)
Y

i

p(↵i|✓) p(ni|↵i)

= ⇡(✓)
Y

i

p(↵i|✓) `i(↵i)

Quantitative

θ = (a, b) or (µ, σ)

π(θ) = Flat(µ, σ)

p(αi |θ) = Beta(αi |θ)

p(ni |αi ) =

(
Ni

ni

)
αni
i (1− αi )

Ni−ni
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Generating the population & data

Beta
distribution

(mean, conc'n)

Binomial
distributions
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Likelihood function for one member’s α
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Learning the population distribution
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Lower level estimates

Two approaches

• Hierarchical Bayes (HB): Calculate marginals

p(αj |{ni}) ∝
∫

dθ π(θ)
∏

i 6=j

∫
dαi p(αi |θ) p(ni |αi )

• Empirical Bayes (EB): Plug in an optimum θ̂ and estimate {αi}
View as approximation to HB, or a frequentist procedure that
estimates a prior from the data
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Lower level estimates

Bayesian outlook

• Marginal posteriors are narrower than likelihoods

• Point estimates tend to be closer to true values than MLEs
(averaged across the population)

• Joint distribution for {αi} is dependent
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Frequentist outlook

• Point estimates are biased

• Reduced variance → estimates are closer to truth on average
(lower MSE in repeated sampling)

• Bias for one member estimate depends on data for all other
members

Lingo

• Estimates shrink toward prior/population mean

• Estimates “muster and borrow strength” across population
(Tukey’s phrase); increases accuracy and precision of estimates

• Efron∗ describes shrinkage as a consequence of accounting for
indirect evidence

∗Bradley Efron (2010): “The Future of Indirect Evidence”
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Beware of point estimates!

Population and member estimates

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
α

0

2

4

6

p
(α

)
True

ML

EB pts

EB

True

ML

EB

RMSE = 0.096

RMSE = 0.057
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Competing data analysis goals

“Shrunken” member estimates provide improved & reliable
estimate for population member properties

But they are under-dispersed in comparison to the true values →
not optimal for estimating population properties∗

No point estimates of member properties are good for all tasks!

We should view population data tables/catalogs as providing
descriptions of member likelihood functions,

not “estimates with errors”

∗Louis (1984); Eddington noted this in 1940!
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Measurement error perspective
If the data provided precise {αi} values (coin measurements, flip
physics), we could easily model them as points drawn from a
(beta) population PDF with params θ:

↵i

D = {αi}

p(D|θ) =
∏

i

p(αi |θ)

=
∏

i

Beta(αi |θ)

(A binomial point process)
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Here the finite number of flips provide noisy measurements of each
αi , described by the member likelihood functions `i (αi );

↵i

D = {ni}

p(D|θ) =
∏

i

∫
dαi p(D, {αi}|θ)

=
∏

i

∫
dαi p(αi |θ) p(ni |θ)

=
∏

i

∫
dαi Beta(αi |θ) Binom(ni |θ)

This is a prototype for measurement error problems
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Another conjugate MLM: Gamma-Poisson

Goal: Learn a rate dist’n from count data
(E.g., learn a star or galaxy brightness dist’n from photon counts)

Qualitative

Population
parameters

Source
properties

Observed
data

✓

F1 F2 FN

n1 n2 nN

Quantitative

θ = (α, s) or (µ, σ)

π(θ) = Flat(µ, σ)

p(Fi |θ) = Gamma(Fi |θ)

p(ni |Fi ) = Pois(ni |εiFi )
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Gamma-Poisson population and member estimates

0 50 100 150 200 250
F

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

p
(F

)
KLDML = 0.060 b

KLDShr = 0.179 b

KLDMLM = 0.031 b

True

ML

Shrunken pts

MLM

True

ML

EB

RMSE = 4.30

RMSE = 3.72

Simulations: N = 60 sources from gamma with 〈F 〉 = 100 and σF = 30;
exposures spanning dynamic range of ×16
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Algorithms

Consider the posterior PDF for θ and {αi} in the beta-binomial
MLM:

p(θ, {αi}|{ni}) ∝ π(θ)
Nmem∏

i=1

Beta(αi |θ) Binom(ni |αi )

For each member, the Beta×Binom factor is ∝ a beta distribution
for αi ; but as a function of θ (e.g., (a, b) or (µ, σ)) it is not simple

The full posterior has a product of Nmem such factors specifying its
θ dependences ⇒ even for a conjugate model for the lower levels,
the overall model is typically analytically intractable

Two approaches exploit conditional independence of lower-level
parameters
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Member marginalization

• Analytically or numerically integrate over {xi} → explore the
reduced-dimension marginal for θ via MCMC
→ {θi} ∼ p(θ|D)

• If xi are of interest, sample them from their conditionals,
conditioned on θi :

I Pick a θ from {θi}
I Draw {xi} by independent sampling from their conditionals

(give θ)

I Iterate

GPUs can accelerate this for application to large datasets

Only useful for low-dimensional latent parameters xi
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Metropolis-within-Gibbs algorithm

Block the full parameter space:

• Block of m population parameters, θ

• N blocks of lower level (latent) parameters, xi

Get posterior samples by iterating back and forth between:

• m-D Metropolis-Hastings sampling of θ from p(θ|{xi},D)

This requires a problem-specific proposal distribution

• N independent samples of xi from the conditional
p(xi |θ,Di )

This can often exploit conjugate structure

E.g., Beta-binomial: αi ∼ Beta(αi |θ) Binom(ni |αi ),
which is just a Beta for αi

MWG explicitly displays the feedback between population and
member inference
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