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Model Fitting

Non-linear regression

Density (shape) estimation

Parameter estimation of the assumed model

Goodness of fit

Model Selection

Nested (In quasar spectrum, should one add a broad
absorption line BAL component to a power law continuum?
Are there 4 planets or 6 orbiting a star?)

Non-nested (is the quasar emission process a mixture of
blackbodies or a power law?).

Model misspecification
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Model Fitting in Astronomy

Is the underlying nature of an X-ray stellar spectrum a
non-thermal power law?

Are the fluctuations in the cosmic microwave background best
fit by Big Bang models with dark energy?

Are there interesting correlations among the properties of
objects in any given class (e.g. the Fundamental Plane of
elliptical galaxies), and what are the optimal analytical
expressions of such correlations?
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A good model should be

Parsimonious (model simplicity)

Conform fitted model to the data (goodness of fit)

Easily generalizable.

Not under-fit that excludes key variables or effects

Not over-fit that is unnecessarily complex by including
extraneous explanatory variables or effects.

Under-fitting induces bias and over-fitting induces high
variability.

A good model should balance the competing objectives of
conformity to the data and parsimony.



Chandra Orion Ultradeep Project (COUP)

$4Bn Chandra X-Ray observatory NASA 1999
1616 Bright Sources. Two weeks of observations in 2003



What is the underlying nature of a stellar spectrum?

Successful model for high signal-to-noise X-ray spectrum.
Complicated thermal model with several temperatures

and element abundances (17 parameters)



COUP source # 410 in Orion Nebula with 468 photons
Thermal model with absorption AV ∼ 1 mag

Fitting binned data using χ2



Best-fit model: A plausible emission mechanism

Model assuming a single-temperature thermal plasma with
solar abundances of elements. The model has three free
parameters denoted by a vector θ.

plasma temperature
line-of-sight absorption
normalization

The astrophysical model has been convolved with complicated
functions representing the sensitivity of the telescope and
detector.

The model is fitted by minimizing sum of squares (‘minimum
chi-square’) with an iterative procedure.

θ̂ = arg min
θ
χ2(θ) = arg min

θ

N∑
i=1

(
yi −Mi (θ)

σi

)2

.

Chi-square minimization is a misnomer. It is parameter estimation
by weighted least squares.



Limitations to χ2 ‘minimization’

Fails when bins have too few data points.

Binning is arbitrary. Binning involves loss of information.

Data points should be independent.

Failure of independence assumption is common in
astronomical data due to effects of the instrumental setup;
e.g. it is typical to have ≥ 3 pixels for each telescope point
spread function (in an image) or spectrograph resolution
element (in a spectrum). Thus adjacent pixels are not
independent.

Does not provide clear procedures for adjudicating between
models with different numbers of parameters (e.g. one- vs.
two-temperature models) or between different acceptable
models (e.g. local minima in χ2(θ) space).

Unsuitable to obtain confidence intervals on parameters when
complex correlations between the estimators of parameters are
present (e.g. non-parabolic shape near the minimum in χ2(θ)
space).
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Alternative approach to the model fitting based on EDF

Fitting to unbinned EDF
Correct model family, incorrect parameter value

Thermal model with absorption set at AV ∼ 10 mag



Misspecified model family!
Power law model with absorption set at AV ∼ 1 mag

Can the power law model be excluded with 99% confidence
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1 Statistics based on EDF
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Empirical Distribution Function



Statistics based on EDF

Kolmogrov-Smirnov: Dn = sup
x
|Fn(x)− F (x)|,

H(y) = P(Dn ≤ y), 1− H(dn(α)) = α

Cramér-von Mises:

∫
(Fn(x)− F (x))2 dF (x)

Anderson - Darling:

∫
(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x)

is more sensitive at tails.

These statistics are distribution free if F is continuous &
univariate.

No longer distribution free if either F is not univariate or
parameters of F are estimated.

EDF based fitting requires little or no probability distributional
assumptions such as Gaussianity or Poisson structure.
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Misuse of Kolmogorov-Smirnov

The KS statistic is used in ∼500 astronomical papers/yr, but often
incorrectly or with less efficiency than an alternative statistic.

The 1-sample KS test (data vs. model comparison) is
distribution-free only when the model is not derived from the
dataset.

The KS test is distribution-free (i.e. probabilities can be used for
hypothesis testing) only in 1-dimension.

Probabilities need to be obtained from bootstrap resampling in
these cases.

Numerical Recipe’s treatment of a 2-dim KS test is mathematically
invalid.

See the viral page
Beware the Kolmogorov-Smirnov test!

at http://asaip.psu.edu
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Kolmogorov-Smirnov Table

KS probabilities are invalid
when the model parameters
are estimated from the
data. Some astronomers use
them incorrectly.

– Lillifors (1964)



Kolmogorov-Smirnov and Anderson-Darling Statistics

The KS statistic efficiently detects differences in global shapes, but
not small scale effects or differences near the tails. The
Anderson-Darling statistic (tail-weighted Cramer-von Mises
statistic) is more sensitive.

KSn =
√
n sup

x
|Fn(x)− F (x)| ADn = n

∫
(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x)



Multivariate Case

Example – Paul B. Simpson (1951)

F (x , y) = ax2y + (1− a)y2x , 0 < x , y < 1

(X1,Y1) ∼ F . F1 denotes the EDF of (X1,Y1)

P(|F1(x , y)− F (x , y)| < .72, for all x , y)

> .065 if a = 0, (F (x , y) = y2x)

< .058 if a = .5, (F (x , y) =
1

2
xy(x + y))

Numerical Recipe’s treatment of a 2-dim KS test is mathematically
invalid.



Processes with estimated parameters

{F (.; θ) : θ ∈ Θ} – a family of continuous distributions

Θ is a open region in a p-dimensional space.

X1, . . . ,Xn sample from F

Test F = F (.; θ) for some θ = θ0

Kolmogorov-Smirnov, Cramér-von Mises statistics, etc., when θ is
estimated from the data, are continuous functionals of the
empirical process

Yn(x ; θ̂n) =
√
n
(
Fn(x)− F (x ; θ̂n)

)
θ̂n = θn(X1, . . . ,Xn) is an estimator θ

Fn – the EDF of X1, . . . ,Xn

– The so-called ‘Bootstrap’ helps here.



Monte Carlo simulation

Astronomers have often used Monte Carlo methods to
simulate datasets from uniform or Gaussian populations.
While helpful in some cases, this does not avoid the
assumption of a simple underlying distribution.

Instead, what if we take the observed data as hypothetical
‘population’ and use Monte Carlo simulation on it. Can
simulate many ‘datasets’ and, each of these can be analyzed
in the same way to see how the estimates depend on plausible
random variations in the data.

(No costly observations for ‘new/additional’ data).
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What is Bootstrap?

Bootstrap (a resampling procedure) is a Monte Carlo method
of simulating ‘datasets’ from an observed/given data, without
any assumption on the underlying population.

Resampling the original data preserves (adaptively) whatever
distributions are truly present, including selection effects such
as truncation (flux limits or saturation).

Bootstrap helps evaluate statistical properties using data
rather than an assumed Gaussian or power law or other
distributions.

Bootstrap procedures are supported by solid theoretical
foundations.
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Bootstrap Procedure

X = (X1, . . . ,Xn) - a sample from F

X∗ = (X ∗1 , . . . ,X
∗
n ) - a simple random sample from the data.

θ̂ is an estimator of θ

θ∗ is based on X ∗i

Examples:

θ̂ = X̄n, θ∗ = X̄ ∗n

θ̂ =
1

n

n∑
i=1

(Xi − X̄n)2, θ∗ =
1

n

n∑
i=1

(X ∗i − X̄ ∗n )2

θ∗ − θ̂ behaves like θ̂ − θ



Nonparametric and Parametric Bootstrap

Simple random sampling from data is equivalent to drawing a set
of i.i.d. random variables from the empirical distribution.
This is Nonparametric Bootstrap.

Parametric Bootstrap if X ∗1 , . . . ,X
∗
n are i.i.d. r.v. from

Ĥn, an estimator of F based on data (X1, . . . ,Xn).

Example of Parametric Bootstrap:

X1, . . . ,Xn i .i .d . ∼ N(µ, σ2)

X ∗1 , . . . ,X
∗
n i .i .d . ∼ N(X̄n, s

2
n); s2

n = 1
n

∑n
i=1(Xi − X̄n)2

N(X̄n, s
2
n) is a good estimator of the distribution N(µ, σ2)
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Bootstrap Variance

θ̂ is an estimator of θ based on X1, . . . ,Xn.

θ∗ denotes the bootstrap estimator based on X ∗1 , . . . ,X
∗
n .

Var∗(θ̂) = E ∗ (θ∗ − E (θ∗))2

In practice, generate N bootstrap samples of size n.
Compute θ∗1, . . . , θ

∗
N for each of the N samples.

θ̄∗ =
1

N

N∑
i=1

θ∗i

Var(θ̂) ≈ 1

N

N∑
i=1

(
θ∗i − θ̄∗

)2



Bootstrap Distribution

Statistical inference requires sampling distribution Gn,
given by Gn(x) = P(

√
n(X̄ − µ)/σ ≤ x)

statistic bootstrap version

√
n(X̄ − µ)/σ

√
n(X̄ ∗ − X̄ )/sn

√
n(X̄ − µ)/sn

√
n(X̄ ∗ − X̄ )/s∗n

where s2
n = 1

n

∑n
i=1(Xi − X̄ )2 and s∗n

2 = 1
n

∑n
i=1(X ∗i − X̄ ∗)2

For a given data, the bootstrap distribution GB is given by

GB(x) = P(
√
n(X̄ ∗ − X̄ )/sn ≤ x |X)

GB is completely known and Gn ≈ GB .



Example

If Gn denotes the sampling distribution of
√
n(X̄ − µ)/σ

then the corresponding bootstrap distribution GB is given by

GB(x) = P∗(
√
n(X̄ ∗ − X̄ )/sn ≤ x |X).

Construction of Bootstrap Histogram

M = nn bootstrap samples possible

X
∗(1)
1 , . . . ,X

∗(1)
n r1 =

√
n(X̄ ∗(1) − X̄ )/sn

X
∗(2)
1 , . . . ,X

∗(2)
n r2 =

√
n(X̄ ∗(2) − X̄ )/sn

. . .
. . .

. . .
. . .

X
∗(M)
1 , . . . ,X

∗(M)
n rM =

√
n(X̄ ∗(M) − X̄ )/sn

Frequency table or histogram based on r1, . . . , rM gives GB .



Confidence Interval for the mean

For n = 10 data points, M = ten billion

N ∼ n(log n)2 bootstrap replications suffice

– Babu and Singh (1983) Ann. Stat.

Compute
√
n(X̄ ∗(j) − X̄ )/sn for N bootstrap samples

Arrange them in increasing order

r1 < r2 < · · · < rN k = [0.05N], m = [0.95N]

90% Confidence Interval for µ is

X̄ − rm
sn√
n
≤ µ < X̄ − rk

sn√
n



Bootstrap at its best

Pearson’s correlation coefficient and its bootstrap version

ρ̂ =
1
n

∑n
i=1(XiYi − X̄ Ȳ )√(

1
n

∑n
i=1(Xi − X̄ )2

) (
1
n

∑n
i=1(Yi − Ȳ )2

)
ρ∗ =

1
n

∑n
i=1(X ∗

i Y
∗
i − X̄ ∗

n Ȳ
∗
n )√(

1
n

∑n
i=1(X ∗

i − X̄ ∗
n )2
) (

1
n

∑n
i=1(Y ∗

i − Ȳ ∗
n )2
)

Smooth Functional Model

ρ̂ = H(Z̄), where Zi =(XiYi ,X
2
i ,Y

2
i ,Xi ,Yi )

H(a1, a2, a3, a4, a5) =
(a1 − a4a5)√

((a2 − a2
4)(a3 − a2

5))

ρ∗ = H(Z̄∗), where Z∗i =(X ∗i Y
∗
i ,X

∗2
i ,Y ∗2i ,X ∗i ,Y

∗
i )



Smooth Functional Model: General case

H is a smooth function and Z1 is a random vector.
θ̂ = H(Z̄) is an estimator of the parameter θ = H(E(Z1))

Division (normalization) of
√
n(H(Z̄)− H(E(Z1)) by its standard

deviation makes them units free.
Studentization, if estimates of standard deviations are used.
Under some regularity conditions Bootstrap distribution gives a
very good approximation to the sampling distribution of such
normalized statistics.

The theory works for both parametric and nonparametric
Bootstrap.

– Babu and Singh (1983) Ann. Stat.
– Babu and Singh (1984) Sankhyā
– Singh and Babu (1990) Scand J. Stat.



Bootstrap Percentile-t Confidence Interval

In practice

Randomly generate N ∼ n(log n)2 bootstrap samples

Compute t
∗(j)
n for each bootstrap sample

Arrange them in increasing order
u1 < u2 < · · · < uN , k = [0.05N], m = [0.95N]

90% Confidence Interval for the parameter θ is

θ̂ − um
σ̂n√
n
≤ θ < θ̂ − uk

σ̂n√
n

This is called bootstrap PERCENTILE-t confidence interval



When does bootstrap work well

Sample Means

Sample Variances

Central and Non-central t-statistics
(with possibly non-normal populations)

Sample Coefficient of Variation

Maximum Likelihood Estimators

Least Squares Estimators

Correlation Coefficients

Regression Coefficients

Smooth transforms of these statistics



When does Bootstrap fail

θ̂ = max
1≤i≤n

Xi Non-smooth estimator

– Bickel and Freedman (1981) Ann. Stat.

θ̂ = X̄ and EX 2
1 =∞ Heavy tails

– Babu (1984) Sankhyā
– Athreya (1987) Ann. Stat.

θ̂ − θ = H(Z̄)− H(E(Z1) and ∂H(E(Z1)) = 0

Limit distribution is like linear combinations of Chi-squares.
But here a modified version works.

– Babu (1984) Sankhyā
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When does Bootstrap fail

θ̂ = max
1≤i≤n

Xi Non-smooth estimator

– Bickel and Freedman (1981) Ann. Stat.

θ̂ = X̄ and EX 2
1 =∞ Heavy tails

– Babu (1984) Sankhyā
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Non-independent case

X1, . . .Xn are identically distributed but not independent

Straight forward bootstrap does not work in the dependent
case. Variances of sums of random variables do not match.

A clear knowledge of the dependent structure is needed to
replicate resampling procedure.

Classical bootstrap fails in the case of Time Series data.

If the process is auto-regressive or moving-average one can
replicate resampling procedure.

In the general time-series case the moving block bootstrap is
suggested.



Moving Block Bootstrap

X1, · · · ,Xn is a stationary sequence.

1 The sequence is split into overlapping blocks B1, · · · ,Bn−b+1,
of length b, where Bj consists of b consecutive observations
starting from Xj , i.e., Bj = {Xj ,Xj+1, · · · ,Xj+b−1}.
Observation 1 to b will be block 1, observation 2 to b+1 will
be block 2 etc.

2 From these n-b+1 blocks, n/b blocks will be drawn at random
with replacement.

3 Align these n/b blocks in the order they were picked.

This bootstrap procedure works with dependent data.
By construction, the resampled data will not be stationary.

Varying randomly the block length can avoid this problem.
However, the moving block bootstrap is still to be preferred.

– Lahiri (1999) Annals of Statistics



Bootlier [Outlier Detection using Bootstrap]

Singh and Xie (2003, Sankhya) proposed a bootstrap density
plot (histogram) of “mean − trimmed mean” for a suitable
trimming number as a nonparametric graphical tool for
detecting outlier(s) in a data set.

‘Bootlier’ plot is multimodal in the presence of outliers.

This method can be applied to data sets from a wide range of
distributions, and it is quite effective in detecting outlying
values in data sets with small portion of outliers.

Strengths:

Its ability to incorporate heavy or short tailed data in outlier
detections.
Its effectiveness for outlier detection in multivariate settings
where only few tools are available.



Bootlier plot

Density plots (histograms) of bootstrap sample mean (left), and
bootstrap “mean − trimmed mean” (right). Original data are 20
standard normal observations with an outlier 6.

– Singh and Xie (2003) Sankhya



Linear Regression

Yi = α + βXi + εi

E(εi ) = 0 and Var(εi ) = σ2
i

Least squares estimators of β and α

β̂ =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2

α̂ = Ȳ − β̂X̄

Var(β̂) =

∑n
i=1(Xi − X̄ )2σ2

i

L2
n

Ln =
n∑

i=1

(Xi − X̄ )2



Classical Bootstrap

Estimate the residuals ei = Yi − α̂− β̂Xi

Draw e∗1 , . . . , e
∗
n from ê1, . . . , ên, where êi = ei − 1

n

∑n
j=1 ej .

Bootstrap estimators

β∗ = β̂ +

∑n
i=1(Xi − X̄ )(e∗i − ē∗)∑n

i=1(Xi − X̄ )2

α∗ = α̂ + (β̂ − β∗)X̄ + ē∗

VB = EB(β∗ − β̂)2 ≈ Var(β̂) efficient if σi = σ

VB does not approximate the variance of β̂ under
heteroscedasticity (i.e. unequal variances σi )



Paired Bootstrap

Resample the pairs (X1,Y1), . . . , (Xn,Yn)
(X̃1, Ỹ1), . . . , (X̃n, Ỹn)

β̃ =

∑n
i=1(X̃i − ¯̃X )(Ỹi − ¯̃Y )∑n

i=1(X̃i − ¯̃X )2
, α̃ = ¯̃Y − β̃ ¯̃X

Repeat the resampling N times and get

β
(1)
PB , . . . , β

(N)
PB

1

N

N∑
i=1

(β
(i)
PB − β̂)2 ≈ Var(β̂)

even when not all σi are the same



Comparison

The Classical Bootstrap

– Efficient when σi = σ
– But inconsistent when σi ’s differ

The Paired Bootstrap

– Robust against heteroscedasticity
– Works well even when σi are all different



Bootstrap References

G. J. Babu and C. R. Rao (1993) Bootstrap Methodology,
Handbook of Statistics, Vol 9, Ch. 19.

Michael R. Chernick (2007). Bootstrap Methods - A guide for
Practitioners and Researchers, (2nd Ed.) Wiley Inter-Science.

Michael R. Chernick and Robert A. LaBudde (2011) An
Introduction to Bootstrap Methods with Applications to R,
Wiley.

Abdelhak M. Zoubir and D. Robert Iskander (2004) Bootstrap
Techniques for Signal Processing, Cambridge Univ Press.

A handbook on ‘bootstrap’ for engineers to analyze
complicated data with little or no model assumptions.
Includes applications to radar and sonar signal processing.



Back to functional model fitting

We shall now get back to

Goodness of Fit

when parameters are estimated.



Parametric bootstrap

X ∗1 , . . . ,X
∗
n sample generated from F (.; θ̂n)

In Gaussian case θ̂∗n = (X̄ ∗n , s
∗2
n ).

Both √
n sup

x
|Fn(x)− F (x ; θ̂n)|

and √
n sup

x
|F ∗n (x)− F (x ; θ̂∗n)|

have the same limiting distribution

In XSPEC package, the parametric bootstrap is command FAKEIT,
which makes Monte Carlo simulation of specified spectral model.

Numerical Recipes describes a parametric bootstrap (random
sampling of a specified pdf) as the ‘transformation method’ of
generating random deviates.



Parametric bootstrap for Climate Model

Extreme daily precipitation over the Euro-Mediterranean area are
modeled by a high-resolution Global Climate Model based on
extreme value theory.

A modified Anderson-Darling statistic is used with Generalized
Pareto family of distributions.

Fµ,σ,ξ(y) =

{
1− {1 + (ξ(y − µ)/σ)}−1/ξ, ξ 6= 0, y ≥ µ
1− exp(−(y − µ)/σ)), ξ = 0 y ≥ µ,

where σ > 0, y ≥ µ when ξ > 0 and y ∈ [µ, µ− σξ], when ξ < 0.
For modified Anderson-Darling statistic, both∫

n (Fn(x)− F (x ; θ̂n))2 (1− F (x ; θ̂n))−1dF (x ; θ̂n)

and its bootstrap version∫
n (F ∗n (x)− F (x ; θ̂∗n))2 (1− F (x ; θ̂∗n))−1dF (x ; θ̂∗n)

have the same limiting distribution, when ξ > 0.



Nonparametric bootstrap

X ∗1 , . . . ,X
∗
n sample from Fn

i.e., a simple random sample from X1, . . . ,Xn.

Bias correction

Bn(x) =
√
n(Fn(x)− F (x ; θ̂n))

is needed.

Both √
n sup

x
|Fn(x)− F (x ; θ̂n)|

and
sup
x
|
√
n
(
F ∗n (x)− F (x ; θ̂∗n)

)
− Bn(x)|

have the same limiting distribution.

XSPEC does not provide a nonparametric bootstrap capability



Need for such bias corrections in special situations are well
documented in the bootstrap literature.

χ2 type statistics – (Babu, 1984, Statistics with linear
combinations of chi-squares as weak limit. Sankhyā, Series A, 46,
85-93.)

U-statistics – (Arcones and Giné, 1992, On the bootstrap of U
and V statistics. The Ann. of Statist., 20, 655–674.)



Model misspecification

X1, . . . ,Xn data from unknown H.

H may or may not belong to the family {F (.; θ) : θ ∈ Θ}

H is closest to F (., θ0)

Kullback-Leibler (information) divergence∫
h(x) log

(
h(x)/f (x ; θ)

)
dν(x) ≥ 0∫

| log h(x)|h(x)dν(x) <∞∫
h(x) log f (x ; θ0)dν(x) = maxθ∈Θ

∫
h(x) log f (x ; θ)dν(x)



Confidence limits under model misspecification

For any 0 < α < 1,

P
(√

n supx |Fn(x)− F (x ; θ̂n)− (H(x)− F (x ; θ0))| ≤ C ∗α
)
− α→ 0

C ∗α is the α-th quantile of

supx |
√
n
(
F ∗n (x)− F (x ; θ̂∗n)

)
−
√
n
(
Fn(x)− F (x ; θ̂n)

)
|

This provide an estimate of the distance between the true
distribution and the family of distributions under consideration.



Discussion so far

K-S goodness of fit is often better than Chi-square test.

K-S cannot handle heteroscadastic errors

Anderson-Darling is better in handling the tail part of the
distributions.

K-S probabilities are incorrect if the model parameters are
estimated from the same data.

K-S does not work in more than one dimension.

Bootstrap helps in the last two cases.

So far we considered model fitting part.

We shall now discuss model selection issues.



MLE and Model Selection

1 Model Selection Framework

2 Hypothesis testing for model selection: Nested models

3 Limitations

4 Penalized likelihood

5 Information Criteria based model selection

Akaike Information Criterion (AIC)

Bayesian Information Criterion (BIC)



Model Selection Framework (based on likelihoods)

Observed data D

M1, . . . ,Mk are models for D under consideration

Likelihood f (D|θj ;Mj) and loglikelihood
`(θj) = log f (D|θj ;Mj) for model Mj .

f (D|θj ;Mj) is the probability density function (in the
continuous case) or probability mass function (in the discrete
case) evaluated at data D.
θj is a kj dimensional parameter vector.

Example

D = (X1, . . . ,Xn), Xi , i.i.d. N(µ, σ2) r.v. Likelihood

f (D|µ, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}

Most of the methodology can be framed as a comparison between
two models M1 and M2.
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Hypothesis testing for model selection: Nested models

The model M1 is said to be nested in M2, if some coordinates of
θ1 are fixed, i.e. the parameter vector is partitioned as

θ2 = (α, γ) and θ1 = (α, γ0)

γ0 is some known fixed constant vector.

Comparison of M1 and M2 can be viewed as a classical hypothesis
testing problem of H0 : γ = γ0.

Example

M2 Gaussian with mean µ and variance σ2

M1 Gaussian with mean 0 and variance σ2

The model selection problem here can be framed in terms of
statistical hypothesis testing H0 : µ = 0, with free parameter σ.

Hypothesis testing is a criteria used for comparing two models.
Classical testing methods are generally used for nested models.
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Limitations

Caution/Objections

M1 and M2 are not treated symmetrically as the null
hypothesis is M1.

Cannot accept H0

Can only reject or fail to reject H0.

Larger samples can detect the discrepancies and more likely to
lead to rejection of the null hypothesis.



Penalized likelihood

If M1 is nested in M2, then the largest likelihood achievable by
M2 will always be larger than that of M1.

Adding a penalty on larger models would achieve a balance
between over-fitting and under-fitting, leading to the so called
Penalized Likelihood approach.

Information criteria based model selection procedures are
penalized likelihood procedures.



Akaike Information Criterion – (AIC)

Grounding in the concept of entropy, Akaike proposed
an information criterion (AIC), now popularly known as
Akaike Information Criterion, where both model estimation
and selection could be simultaneously accomplished.

AIC for model Mj is −2`(θ̂j) + 2kj . The term 2`(θ̂j) is known
as the goodness of fit term, and 2kj is known as the penalty.

The penalty term increase as the complexity of the model
grows.

AIC is generally regarded as the first model selection criterion.

It continues to be the most widely known and used model
selection tool among practitioners.
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Advantages of AIC

Does not require the assumption that one of the candidate
models is the“true” or “correct” model.

All the models are treated symmetrically, unlike hypothesis
testing.

Can be used to compare nested as well as non-nested models.

Can be used to compare models based on different families of
probability distributions.

Disadvantages of AIC

Large data are required especially in complex modeling
frameworks.

Leads to an inconsistent model selection if there exists a true
model of finite order. That is, if k0 is the correct number of
parameters, and k̂ = ki (i = arg minj (−2`(θ̂j) + 2kj)), then

limn→∞ P(k̂ > k0) > 0. That is even if we have very large
number of observations, k̂ does not approach the true value.
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Bayesian Information Criterion (BIC)

BIC is also known as the Schwarz Bayesian Criterion
−2`(θ̂j) + kj log n

BIC is consistent unlike AIC

Like AIC, the models need not be nested to use BIC

AIC penalizes free parameters less strongly than does the BIC

Conditions under which these two criteria are mathematically
justified are often ignored in practice.

Some practitioners apply them even in situations where they
should not be applied.

Caution: Sometimes these criteria are multiplied by −1 so the
goal changes to finding the maximizer.
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