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Model

Multiple linear regression model :

yi = x ′iβ + εi , i = 1, 2, ....., n

where

I y1, . . . , yn are responses.

I x1, . . . , xn are known non random design vectors.

I ε1, . . . , εn are iid random variables.

I β is the p × 1 vector of parameters (p is fixed).



M-Estimator

β̄n is the M-estimator of the parameter β corresponding to the
objective function ρ(·) if

β̄n = arg min
t

[ n∑
i=1

ρ(yi − x ′i t)

]

Equivalently, if ρ′ = ψ then ψ(·) is the score function and β̄n is the
solution of the vector equation

n∑
i=1

xiψ(yi − x ′i t) = 0.

Why Useful?
To develop a unified theory at-least asymptotically.



Common Examples

I Least square estimator: ρ(x) = x2/2 and ψ(x) = x .

I θth Quantile regression estimator: if 1(·) is the indicator
function then ρ(x) = (θ − 1(x < 0))x and ψ(x)
= (θ − 1)1(x < 0) + θ1(x > 0).

I LAD regression estimator: ρ(x) = |x | and ψ(x)
= sign(x) = 1,−1, 0 according as x > 0, x < 0 and x = 0.
Can be obtained by assuming θ = 1/2 in the previous case.



A Compact List

Source: http://research.microsoft.com/en-us/um/people/

zhang/INRIA/Publis/Tutorial-Estim/node24.html

http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html


Distributional Approximation Methods

A reasonable good approximation to the exact distribution of the
M-estimator is necessary for the purpose of inference on the
parameter β, eg.

I for finding confidence intervals.

I for testing hypotheses

Choices:

I Asymptotic Normality:
Huber (1981)

I Residual Bootstrap:
Freedman(1981), Lahiri(1992)

I Perturbation Bootstrap:
Our proposed method



Asymptotic Normality (AN)

Suppose,

I An = n−1
∑n

i=1 xix ′i .
I σ2 = Eψ2(ε1)/E2ψ′(ε1) when ψ′ exists.

I σ2 = Eψ2(ε1)/(
∫
ψ(x)f ′(x)dx)2 when Lebesgue density of ε1

and its derivative exists.

Result:
∣∣∣P(√nσ−1A1/2

n (β̂n − β) ∈ B
)
−Φ(B)

∣∣∣ = O(n−1/2) in an

uniform sense. Here B is a subset of Rp.



Residual Bootstrap (RB)

I Suppose, ei = yi − x ′i β̂n for i ∈ {1, . . . , n}.
I Draw a random sample (with replacement) {e∗1 , . . . , e∗n} from
{e1, . . . , en}.

I Define, y∗i = x ′i β̂n + e∗i for i ∈ {1, . . . , n}.
I RB estimator β̂R

n is defined as the solution of

n∑
i=1

xi
(
ψ(y∗i − x ′i t)− n−1

n∑
i=1

ψ(ei )
)

= 0

Result: Under some conditions on ψ(·), errors and design vectors,∣∣∣P(f1(β̂n − β) ∈ B
)
− CP

(
f2(β̂R

n − β̂n) ∈ B
)∣∣∣ = Op(n−1) in an

uniform sense. Here B is a subset of Rp and f1(·) & f2(·) are
known functions.



Perturbation Bootstrap (PB)

I {G ∗1 , . . . ,G ∗n } is a iid sample from Beta(1/2, 3/2).

I PB estimator β̂P
n is defined as the solution of

n∑
i=1

xiψ(yi − x ′i t)G ∗i = 0

Result: Under some conditions on ψ(·), errors and design vectors,∣∣∣P(f3(β̂n − β) ∈ B
)
− CP

(
f4(β̂P

n − β̂n) ∈ B
)∣∣∣ = Op(n−1) in an

uniform sense. Here B is a subset of Rp and f3(·) & f4(·) are
known functions.



Another PB for Least Square (ψ(x) = x)

I {G ∗1 , . . . ,G ∗n } is a iid sample from Beta(1/2, 3/2).

I Define, zi = x ′i β̂n + 4ei (G
∗
i − 1/4) for i ∈ {1, . . . , n}.

I PB estimator β̂P
n is defined as the solution of

n∑
i=1

xi (zi − x ′i t) = 0

Result: Under some conditions on ψ(·), errors and design vectors,∣∣∣P(f3(β̂n − β) ∈ B
)
− CP

(
f4(β̂P

n − β̂n) ∈ B
)∣∣∣ = Op(n−1) in an

uniform sense. Here B is a subset of Rp and f3(·) & f4(·) are the
same functions as in the previous slide.



Remarks

I Bootstrap methods have much better accuracy than
asymptotic normal approximation.

I RB and PB corrects for skewness whereas normal
approximation does not.

I In case of bootstrap methods one just need to repeat the
procedure several times (say n log n times) and then sort them
and find desired quantile.

I PB is clearly easy to implement than RB. The alternative PB
for the LS requires to find LS estimator depending on some
pseudo observations.



Simulation Study

Framework:

I p = 10 and β = (5, 6.5,−3, 2,−7.5,−3.5, 4,−1, 9, 4)′.

I Design vectors x1, . . . , xn generated from MVN(0,Σ) where
Σi ,j = 0.5|i−j |.

I Errors ε1, . . . , εn generated separately from
I N(0, 1)
I Laplace(0, 1/

√
2)

I Gumbel(−0.45, 0.78)
I 0.5 ∗ Gumbel(−0.75, 0.78) + 0.5 ∗ Gumbel(−0.15, 0.78)

I ρ(x) = x2/2 or ψ(x) = x .

Comparison: We compare the empirical coverages of 95 %
confidence regions obtained by the three methods.



Error ∼ N(0, 1)

Figure 1: AN vs RB vs PB



Error ∼ Laplace(0, 1/
√
2)

Figure 2: AN vs RB vs PB



Error ∼ Gumbel(−0.45, 0.78)

Figure 3: AN vs RB vs PB



0.5 ∗ Gumbel(−0.75, 0.78) + 0.5 ∗ Gumbel(−0.15, 0.78)

Figure 4: AN vs RB vs PB
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