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Model

Multiple linear regression model :

y,-:x,{ﬁ—i—e,-, i=1,2, ... ,n

where
> V1,...,Yn are responses.
> Xi,...,Xp are known non random design vectors.
> €1,...,€y are iid random variables.

v

B is the p x 1 vector of parameters (p is fixed).



M-Estimator

B, is the M-estimator of the parameter 3 corresponding to the
objective function p(-) if

,,—argmln [Zp —xt]

Equivalently, if o’ = 1) then 9(-) is the score function and 3, is the
solution of the vector equation

Why Useful?
To develop a unified theory at-least asymptotically.



Common Examples

» Least square estimator: p(x) = x?/2 and 1(x) = x.

» 6th Quantile regression estimator: if 1(-) is the indicator
function then p(x) = (6 — 1(x < 0))x and ¥(x)
= (6 — 1)1(x < 0) 4+ 01(x > 0).

» LAD regression estimator: p(x) = |x| and ¥(x)
= sign(x) = 1,—1,0 according as x > 0, x < 0 and x = 0.
Can be obtained by assuming 6§ = 1/2 in the previous case.
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Source: http://research.microsoft.com/en-us/um/people/
zhang/INRIA/Publis/Tutorial-Estim/node24.html
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Distributional Approximation Methods

A reasonable good approximation to the exact distribution of the
M-estimator is necessary for the purpose of inference on the
parameter 3, eg.

» for finding confidence intervals.
» for testing hypotheses
Choices:
» Asymptotic Normality:
Huber (1981)
» Residual Bootstrap:
Freedman(1981), Lahiri(1992)
» Perturbation Bootstrap:
Our proposed method



Asymptotic Normality (AN)

Suppose,
» Ay =n1Y0  xx!
» 02 = E¢2(61)/E2@Z/(61) when ¢ exists.
» 02 = Ey?(e1) /([ ¥(X) dx)? when Lebesgue density of ¢;
and its derivative exists.

Result: ‘P(ﬁaflAi/Q(Bn ~B)€B) - @(B)‘ — O(nY/2) in an
uniform sense. Here B is a subset of RP.



Residual Bootstrap (RB)

» Suppose, e = y; — x{,@,, forie{1,...,n}.

» Draw a random sample (with replacement) {ef, ..., e;} from
{e1,...,en}.

> Define, y* = x/3, + e} fori € {1,...,n}.

» RB estimator B,‘? is defined as the solution of

n

> xi(wlyi — xit) 1Z¢e,)=

i=1
Result: Under some conditions on (), errors and design vectors,
P(fi(By — B) € B) — CP(Ra(BF — Ba) € B)| = Op(n) in an

uniform sense. Here B is a subset of R and fi(-) & fa(-) are
known functions.



Perturbation Bootstrap (PB)

» {Gf,..., Gy} is a iid sample from Beta(1/2,3/2).

» PB estimator B,’,D is defined as the solution of
> xbyi = x/t)G; =0
i=1

Result: Under some conditions on (), errors and design vectors,

P(f(8, ~ ) € B) — CP(fa(BF — B) € B)| = Op(n) in an
uniform sense. Here B is a subset of R and f3(-) & fa(-) are
known functions.



Another PB for Least Square (1(x) = x)

» {G],..., G} is aiid sample from Beta(1/2,3/2).
» Define, z; = X,{,én +4ei(GF —1/4) for i € {1,...,n}.
» PB estimator Bﬁ is defined as the solution of

n

ZX,’(Z; — X,{t) =0

i=1
Result: Under some conditions on (), errors and design vectors,
P(f3(;én -B) € B) - CP(&(B,’: — B € B)‘ = Op(n71)in an

uniform sense. Here B is a subset of RP and f3(-) & f4(-) are the
same functions as in the previous slide.




Remarks

» Bootstrap methods have much better accuracy than
asymptotic normal approximation.

» RB and PB corrects for skewness whereas normal
approximation does not.

> In case of bootstrap methods one just need to repeat the
procedure several times (say nlog n times) and then sort them
and find desired quantile.

» PB is clearly easy to implement than RB. The alternative PB
for the LS requires to find LS estimator depending on some
pseudo observations.



Simulation Study

Framework:
» p=10and 3 = (5,6.5, 3,2, ~7.5,—3.5,4, —1,9,4).
» Design vectors xi, ..., x, generated from MVN(0, X) where
Z;’j = 0.5"'_1".
» Errors €1,..., €, generated separately from
N(O, 1)
Laplace(0,1/+/2)
Gumbel(—0.45,0.78)
0.5 % Gumbel(—0.75,0.78) + 0.5 * Gumbel(—0.15,0.78)

> p(x) = x2/2 or (x) = x.

v

v vy

Comparison: We compare the empirical coverages of 95 %
confidence regions obtained by the three methods.



Error ~ N(0,1)
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Figure 1. AN vs RB vs PB



Error ~ Laplace(0,1/v/2)
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Figure 2: AN vs RB vs PB



Error ~ Gumbel(—0.45,0.78)
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Figure 3: AN vs RB vs PB




0.5  Gumbel(—0.75,0.78) 4 0.5 x Gumbel(—0.15, 0.78)
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Figure 4. AN vs RB vs PB
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