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The Fisher Matrix is useful in estimating the errors of a parameter set of
an experiment without actually knowing or fitting the the parameter values.
This is widely used in defining the observational strategies of an experiment.

1 The Basics

Consider first a simple case: suppose we observe a series of quantities yb, b
∈ {1, . . . B}, each of which has Gaussian uncertainties σb. Suppose in
addition that each observable should be described by a function fb of some
parameters p. The common χ2 value is (we will assume yb for different b are
uncorrelated)

χ2 = ΣB
b

(fb(p)− yb)2

σ2b
.

If the parameters p describe the true universe, then the likelihood of a given
set of observations is

P (y) ∝ exp (−χ
2

2
).

The goal is to estimate parameters p given a realization of the data
y. Using the Bayes’ theorem with uniform prior on p, we have P (p|y) ∝
P (y|p)P (p) = P (y|p), so that the likelihood of a parameter estimate can
be described as a Gaussian with the same χ2, now viewed as a function of
parameters. If we expand about the true values of the parameters, pi =
pi0 + δpi, and average over realizations of the data, and average over the
realizations of the data,

< χ2(p) > = < χ2 > +

〈
∂χ2

∂pj

〉
δpj +

1

2

〈
∂2χ2

∂pj∂pk

〉
δpjδpk + ...

where the expectation values are taken at the true values p0. The mean
value of observable yb is indeed fb(p0), so the second term vanishes. The
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distribution of errors in the measured parameters is thus in the limit of high
statistics proportional to

exp

(
−1

2
χ2
)
∝ exp

(
−1

4

〈
∂2χ2

∂pj∂pk

〉
δpjδpk

)
= exp

(
−1

2
Fjkδp

jδpk
)
,

where the Fisher matrix is

Fij = Σb
1

σ2b

∂fb
∂pj

∂fb
∂pk

.

From this expression it follows that

< δpjδpk > = (F−1)jk,

or, the covariance matrix is simply the inverse of the Fisher Matrix (and
vice versa).

A more general form of Fisher Matrix with covariant errors is given by

Fij = Σab
∂fa
∂pj

V −1ab

∂fb
∂pk

More generally, if one can create a probability P (pi|yb) of the model
parameters given a set of observed data, e.g., by Bayesian methods, then
one can define the Fisher matrix components via

Fij = −
〈
∂2 lnP

∂pi∂pj

〉
and the Cramer-Rao theorem states that any unbiased estimator for the
parameters will deliver a covariance matrix on the parameters that is no
better than F−1.

2 Prior

A Gaussian prior with width ? can be placed on the ith parameter by adding
to the appropriate diagonal element of the Fisher matrix:

Fkl −− > Fkl +
δkiδli
σ2

or
F −− > F + F p

, with F p being an extremely simple matrix with a single non-zero diagonal
element 1/σ2 in the ith row and column.
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3 Tranformation to new variables

A common operation is to transform the Fisher matrix in some variable set
pi into a constraint on a new variable set qi. The formula for this is to
generate the derivative matrix M with Mij = ∂pi/∂qj . In the simple case
of Gaussian errors on observables, the new Fisher matrix is

F ′ = MTFM.

If one wants to add a prior on some quantity that is not a single parameter
of the Fisher matrix, one can work in variables where it is a single parameter
and then make the transformation using the above equation.

4 Marginalization

On many occasions we need to produce a Fisher matrix in a smaller param-
eter space by marginalizing over the uninteresting ?nuisance? parameters.
This amounts to integrating over the nuisance parameters without assuming
any additional priors on their values.

Suppose the full parameter vector set is ~p, which is a union of two pa-
rameter sets: ~p = ~q ∪ ~r, and we are really only interested in the Fisher
matrix for the parameter set ~q. The Fisher matrix F ′ for parameters ~q after
marginalization over ~r can be expressed as

F ′ = Fqq − FqrF
−1
rr Frq.

Here Frr, Fqr, and Frq are submatrices of F .
A common, but numerically unstable procedure, is to

1 invert F ,

2 remove the rows and columns, corresponding to ~r, that are being
marginalized over,

3 then invert the result to obtain the reduced Fisher matrix

This is easy in operation but can fail for ill-conditioned F .

5 Combining observations

When we are combining the constraints from experiments A and B, we will
be summing their Fisher matrices. In general any marginalization over nui-
sance parameters must be done after summation of the two Fisher matrices.
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If, however, the nuisance parameters of A are disjoint from those of B, then
the two data sets have independent probability distributions over the set of
nuisance parameters, and it is permissible to marginalize before summation.

6 An Example: Measuring Baryon Acoustic Os-
cillations with Millions of Supernovae

From Zhan, H., Wang, L., Pinto, P., and Tyson, J. A. (2008), ApJL, 675, 1
Since Type Ia supernovae (SNe) explode in galaxies, they can, in prin-

ciple, be used as the same tracer of the large-scale structure as their hosts
to measure baryon acoustic oscillations (BAOs). To realize this, one must
obtain a dense integrated sampling of SNe over a large fraction of the sky,
which may only be achievable photometrically with future projects such as
the Large Synoptic Survey Telescope. The advantage of SN BAOs is that
SNe have more uniform luminosities and more accurate photometric red-
shifts than galaxies, but the disadvantage is that they are transitory and
hard to obtain in large number at high redshift. We find that a half-sky
photometric SN survey to redshift z = 0.8 is able to measure the baryon sig-
nature in the SN spatial power spectrum. Although dark energy constraints
from SN BAOs are weak, they can significantly improve the results from SN
luminosity distances of the same data, and the combination of the two is no
longer sensitive to cosmic microwave background priors.

Since SNe explode in galaxies, their distribution bears the BAO imprint
as well. To measure the SN spatial power spectrum, one needs the angular
position and redshift of each SN, not its luminosity. Hence, the SN BAO
technique does not suffer from uncertainties in the SN standard candle.
Finally, SNe have rich and time-varying spectral features for accurate esti-
mation of photometric redshifts (photo-zs) (Pinto et al. 2004; Wang 2007;
Wang et al. 2007), which is helpful for measuring BAOs from a photometric
survey.

For the BAO technique to be useful, one must survey a large volume at
a sufficient sampling density as uniformly as pos- sible. Although SN events
are rare, the spatial density of SNe accumulated over several years will be
comparable to the den- sities targeted for future spectroscopic galaxy BAO
surveys.
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6.1 The sample

We assume two photo-z SN survey models: a shallow one (S20k) that covers
20,000 deg2 to z = 0.8 for 10 years, and a deep one (D2k) that covers 2000
deg2 to z = 1.2 for 5 years.
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