Common Methods for Detecting Planets and the BLS Algorithm

Ryan J. Oelkers Astronomy 689 Thursday, September 16, 2015

Exoplanets

- Explosion of work in the past 15 years
- 1642 confirmed planets as of 10:18AM; 5429 candidates
- Observationally biased towards large planets with short orbits

- Transit Eclipse Photometry
- Radial Velocities
- Timing Variations
- Gravitational Microlensing
- Direct Imaging

Image Courtesy of www.jpl.nasa.gov

- <u>Transit Eclipse</u> <u>Photometry</u>
- Radial Velocities
- Timing Variations
- Gravitational Microlensing
- Direct Imaging

1.35 RJ radius planet on a 3.5 day orbit Charbonneau, et al. 1999, ApJL, 529, L45

- Transit Eclipse Photometry
- <u>Radial Velocities</u>
- Timing Variations
- Gravitational Microlensing
- Direct Imaging

0.5 MJ mass planet on a 9.7 day orbit Collins, et al., 2014, AJ, 147, 39

- Transit Eclipse Photometry
- Radial Velocities
- <u>Timing Variations</u>
- Gravitational Microlensing
- Direct Imaging

Long term variation of transit times for KOI-872b Nesvorny, et al. 2012, Science, 336, 1133

- Transit Eclipse Photometry
- Radial Velocities
- Timing Variations
- <u>Gravitational</u>
 <u>Microlensing</u>
- Direct Imaging

5.5 ME mass planet Beaulieu, et al 20016, Nature, 439, 437

- Transit Eclipse Photometry
- Radial Velocities
- Timing Variations
- Gravitational Microlensing
- Direct Imaging

HR7899 with 3 massive exoplanets Serabyn, et al. 2009, BAAS, 42, no 1, 377.06

- <u>Transit Eclipse</u> <u>Photometry</u>
- Radial Velocities
- Timing Variations
- Gravitational Microlensing
- Direct Imaging

1.35 RJ radius planet on a 3.5 day orbit Charbonneau, et al. 1999, ApJL, 529, L45

Eclipse Events

<u>Transit</u> – The planet is in front of the star, eclipsing the star.

Brightness

<u>Occultation</u> – The planet is behind the star, being eclipsed by the star.

Information from Eclipses

Exoplanet transits and eclipsing binary stars allow for the ratio of the radii in the system to be determined. Seager & Ornelas, 2002, arXiv 0206.228

Time

Kepler Light Curve

Transit of Kepler 23b Ford, et al. 2012, ApJ, 750, 113

Kelt Light Curve

Transit of Kelt 6b Collins, et al. 2014, AJ, 147, 39

Small Telescope Transit Searches

Box Least Squares Method

Image from Winn 2010, ArXiv 1001.2010

Box Least Squares Method Kovacs et al. 2002, A&A, 391, 369

 $\begin{array}{ll}
\underline{\text{Minimization of D:}} & L = [i_1, i_2]; H = [1, i_1] \& (i_2, n] \\
D = \sum_{i=1}^{i_1 - 1} w_i (x_i - H)^2 + \sum_{i=i_2 + 1}^n w_i (x_i - H)^2 + \sum_{i=i_1}^{i_2} w_i (x_i - L)^2 & L = \frac{s}{r} & H = -\frac{s}{1 - r} \\
D = \sum_{i=1}^n w_i x_i^2 - \frac{s^2}{r(1 - r)} & s = \sum_{i=i_1}^{i_2} w_i x_i^2 & r = \sum_{i=i_1}^{i_2} w_i & w_i = \sigma_i^{-1} \left[\sum_{i=j}^n \sigma_j^{-1} \right]^{-1}
\end{array}$

For all periods: $SR = MAX \left\{ \left[\frac{s^2(i_1, i_2)}{r(i_1, i_2)[1 - r(i_1, i_2)]} \right]^{\frac{1}{2}} \right\}$

Box Least Squares Method

Box Least Squares Method

Signal Detection Efficiency:

$$SDE = \frac{SR_{peak} - \langle SR \rangle}{\sigma(SR)}$$

$$\alpha = \frac{\delta}{\sigma} \sqrt{nq}$$

Other Requirements for Significant Detections

- Minimum of 3 eclipses
 - -2 for the period determination
 - 3 to rule out odd/even transits
- Checking the best-fit transit vs. the best-fit anti-transit
- Period aliasing checks
- SNR of candidate vs. SNR of all stars
 False-Alarm Probability

Light Curve Statistics

Fit for Best-Fit Transit/Occultation Depth and Time

- The transit technique is a common detection method.
- Understanding noise is a key to detections.
- Many signals can cause transit-like signals
- BLS algorithm is a powerful tool to detect planets in high noise situations