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Principle of Frequentist Inference

Probabilities describe long run relative frequency. Only calculate
probabilities of repeatable events.

I random variables X1, . . . ,Xn are iid with density p(x |θ)

I the unknown parameter θ is some fixed value

I example: X1, . . . ,X100 ∼ N(θ, 1)

I probabilistic statements refer to Xi at some value of θ

Pθ=0

(
1

n

n∑
i=1

Xi > 0.1

)
≈ 0.16

I do not compute probabilities of θ being somewhere

P (θ > 1) = ???
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Bayes Theorem (Not Bayesian Statistics)

Bayes Theorem is a result from probability theory used by both
Bayesian and frequentist statisticians.

p(A|B) =
p(B |A)p(A)

p(B)
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Bayesian Idea

Uncertainty about non–repeatable events (eg the value of
parameters) can be described by probabilities.

I random variables X1, . . . ,Xn are iid with density p(x |θ)

I the possible values for θ are summarized by a prior π(θ) π 6= 3.14 here

I π(θ) > 0 ∀θ,
∫
π(θ) = 1

I π represents prior (before seeing the data) belief about θ

The posterior (belief about parameter after seeing data):

p(θ|X ) =
p(X |θ)π(θ)

p(X )
=

p(X |θ)π(θ)∫
p(X |θ)π(θ)dθ

Note: p(X |θ) and π(θ) are known, but p(θ|X ) may be hard to
compute.
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Conjugate Family

I Under special conditions, the likelihood (p(θ|~X )) and the prior
(π(θ)) are conjugate, meaning the posterior has the same form
as the likelihood.

I In such cases, computing the posterior is easy.

I While priors ideally should be chosen to represent prior belief,
often they are chosen to be conjugate.
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Normal Example

I X1, . . . ,Xn ∼ N(µ, σ2) = p(x |µ) (assume σ2 is known)
I µ ∼ N(µ0, σ

2
0) = π(µ)

The posterior is

p(µ|~X ) =
p(~X |µ)π(µ)

p(~X )

∝ p(~X |µ)π(µ)

∝ exp(−
∑

(xi − µ)2/(2σ2))exp(−(µ− µ0)2/(2σ2
0))

∝ exp

(
−(µ2(nσ2

0 + σ2)− 2µ(σ2
0

∑
Xi + µ0σ

2))

2σ2
0σ

2

)

∝ exp

−
(
µ− σ2

0

∑
Xi+µ0σ

2

nσ2
0+σ2

)2
2
(

σ2
0σ

2

nσ2
0+σ2

)

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Normal Example

So

p(µ|~X ) = N

(
σ2
0

∑
Xi + µ0σ

2

nσ2
0 + σ2

,
σ2
0σ

2

nσ2
0 + σ2

)

I The posterior has the same form as the likelihood (both
normal), so this is a conjugate family.

I The posterior represents your beliefs about the parameter after
having seen the data.
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Bayesian Point Estimators

Once you have a posterior, you may want to summarize it with a
point estimate of θ.

Common Point Estimators:

I maximum–a–posteriori estimator: θ̂MAP = argmax
θ

p(θ|X )

I posterior mean: θ̂M =
∫
θp(θ|X )dθ
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Bayesian Point Estimators (Normal Example)

The mean of a normal equals the mode of the normal, so

θ̂MAP = θ̂M =
σ2
0

∑
Xi + µ0σ

2

nσ2
0 + σ2

I when n is large

≈ 1

n

∑
Xi

the prior “washes out.”

I if n is 1

=
σ2
0X + µ0σ

2

σ2
0 + σ2

weighted average between the prior and the data
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Bayesian (Credible) Intervals / Regions

An 100α% credible interval is any interval [L,U] such that

α =

∫ U

L

p(θ|~X )dθ

I This is the Bayesian version of the confidence interval.

I For normals, about 95% of the data is within 2 standard
deviations of the mean. So a 95% credible interval for the
normal example is

σ2
0

∑
Xi + µ0σ

2

nσ2
0 + σ2

± 2

√
σ2
0σ

2

nσ2
0 + σ2
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Bayesian Computation Preview

I fully conjugate models are more the exception than the rule

I often there is no closed form solution for p(θ|~X )

I techniques such as Markov Chain Monte Carlo (MCMC) are
used to draw samples

θ1, . . . , θm ∼ p(θ|~X )

I point estimators and credible intervals are constructed from
(θ1, . . . , θm)
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Schedule for Next 2 Weeks

I October 29:
I MCMC for Bayesian Intrinsic Scatter Regression Model
I Discuss Problem 2 of Project 3

I November 3:
I Neural Networks in Source Extractor
I Model Checking

I November 5:
I Techniques in Supernovae Search
I Model Checking

I November 10:
I Project 3 Due
I Start Extragalatic Astronomy
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