

Clustering

James Long

November 10, 2015

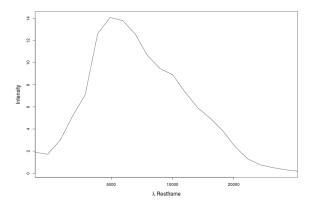
Clustering References

- ► Elements of Statistical Learning (Tibshirani, Hastie, Friedman)
 - ► Chapter 14.3
 - ▶ http://statweb.stanford.edu/~tibs/ElemStatLearn/
- ► Statistics, Data Mining, and Machine Learning in Astronomy (Ivezic, et al)
 - Section 6.4
- ► Modern Statistical Methods for Astronomy (Feigelson, Babu)
 - ► Sections 9.2 9.5

What is clustering?

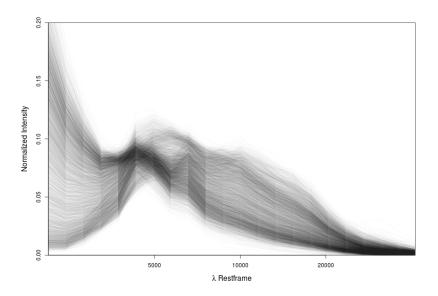
clustering: a partition of the data into sets

- objects in the same cluster (set) are "similar"
- ▶ objects in different clusters are "different"



Objects could be light curves, images, galaxy photometry.

Normalized Rest Frame Synthetic Photometry



Notation, Data Dimension, and Clustering

- $X \in \mathbb{R}^{n \times p}$
 - n is number of observations (galaxies)
 - p is number of variables / features
 - $x_i \in \mathbb{R}^p$ is i^{th} observation
- p is called the dimension of the data.
- ▶ Clustering methods useful for "high" dimensional (p > 3) data where we do not have a priori have idea of structure.

Types of Clustering Methods

- Dissimilarity (distance) based
 - ► Compute dissimilarity between every pair of objects.
 - Similar objects in same cluster, dissimilar objects in different clusters.
- Model based
 - Construct (mixture) model and estimate parameters.
 - Object belongs to component in mixture.
 - eg mixture of Gaussians
- ► Centroid based
 - Find cluster centers (centroids).
 - Object belongs to closest centroid.
 - ▶ eg. k-means

Generic Dissimilarity (Distance) Measures

Let $x_{i\lambda}$ be the flux at filter λ for observation i.

Squared Euclidean Dissimilarity:

$$d(x_i, x_j) = \sum_{\lambda} (x_{i\lambda} - x_{j\lambda})^2$$

More generally:

$$d(x_i,x_j) = \sum_{\lambda} |x_{i\lambda} - x_{j\lambda}|^p$$

Even more general:

$$d(x_i,x_j) = \sum_{\lambda} w(\lambda) |x_{i\lambda} - x_{j\lambda}|^p$$

Note: The log scale implicitly imposes a weight w.

Building Invariances into Dissimilarity Measures

A galaxy identical to x_i but at a different (physical) distance will have flux ax_i where a is some constant. Therefore we should choose d such that

$$d(x_i, x_j) = d(ax_i, bx_j) \, \forall a, b \tag{1}$$

One possibility is

$$d(x_i, x_j) = \sum_{\lambda} \left(\frac{x_{i\lambda}}{\sum_{\lambda} x_{i\lambda}} - \frac{x_{j\lambda}}{\sum_{\lambda} x_{j\lambda}} \right)^2$$

Or simply normalize rest frame SEDs

$$x_i o rac{x_i}{\sum_{\lambda} x_{i\lambda}}$$

Kriek 2011 Dissimilarity

$$d(x_i, x_j) = \sqrt{\frac{\sum_{\lambda} (x_{i\lambda} - a_{12}x_{j\lambda})^2}{\sum_{\lambda} x_{i\lambda}^2}}$$

where

$$a_{12} = \frac{\sum x_{i\lambda} x_{j\lambda}}{\sum x_{j\lambda}^2}$$

- ▶ d satisfies invariance relation (1).
- ▶ $d(x_i, x_j)$ are contained in AS689_b.dat.

Other Ideas for Dissimilarity

- Derivatives (synthetic photometry is functional data)
- ► Extract "features", compute distances in feature space
- Dynamic Time Warping (distance in x,y space)
- ▶ Invariances to errors in photometric redshift

Dissimilarity Based Clustering Methods

- ► Kriek 2011
- ► Hierarchical agglomerative
- ▶ Hierarchical divisive
- ► See references for other methods.

Kriek 2011 Clustering Method Pseudocode

- ▶ $N \leftarrow \{1, \ldots, n\}$
- ▶ $d_{ij} \leftarrow d(x_i, x_j) \ \forall \ i, j \in N$
- ► *K* ← 0
- ► repeat:
 - $A_i \leftarrow \{j : d_{ij} < 0.05, \ j \in N\} \ \forall \ i \in N$
 - ▶ $c \leftarrow \operatorname{argmax} \#(A_i)$
 - if $\#(A_c)' < 19$:
 - break
 - K ← K + 1
 - $C_K \leftarrow \{x_j : j \in N \cap A_c\}$
 - $N \leftarrow N \backslash A_c$

 C_1, \ldots, C_K are the clusters. Some objects are unclustered.

Hierarchical Agglomerative Clustering Idea

Main Idea:

- Every observation starts as own cluster.
- ▶ Iteratively merge "close" clusters together.
- ▶ Iterate until one giant cluster left.

This method is

- ▶ **Hierarchical:** Each iteration produces a clustering, so do not specify number of clusters in advance.
- ► **Agglomerative:** Initially every observation in own cluster.

Hierarchical Agglomerative Clustering Pseudocode

- $N \leftarrow \{1,\ldots,n\}$
- ▶ $d_{ij} \leftarrow d(x_i, x_j) \ \forall \ i, j \in N$
- ▶ $C_{in} \leftarrow \{x_i\} \ \forall i \in N$
- ▶ for k = n, ..., 2:
 - $i,j \leftarrow \underset{\{i,j:i < j, i,j \in N\}}{\operatorname{argmin}} d_C(C_{ik}, C_{jk})$
 - $ightharpoonup C_{i(k-1)} \leftarrow C_{ik} \cup C_{ik}$
 - ► $C_{I(k-1)} \leftarrow C_{Ik} \ \forall I \neq i, j \text{ and } I \in N$
 - ▶ $N \leftarrow N \setminus \{j\}$

The $C_{\cdot k}$ are the k clusters in the k^{th} level of the hierarchy.

How to Merge Clusters (What is d_C ?)

► Average Linkage

$$d_{C}(C_{i}, C_{j}) = \frac{1}{\#(C_{i})\#(C_{j})} \sum_{x \in C_{i}} \sum_{x' \in C_{i}} d(x, x')$$

▶ Complete Linkage

$$d_C(C_i, C_j) = \max_{x \in C_i, x' \in C_i} d(x, x')$$

Single Linkage

$$d_C(C_i, C_j) = \min_{x \in C_i, x' \in C_i} d(x, x')$$

Constructing a Dendogram

▶ At iteration *k*

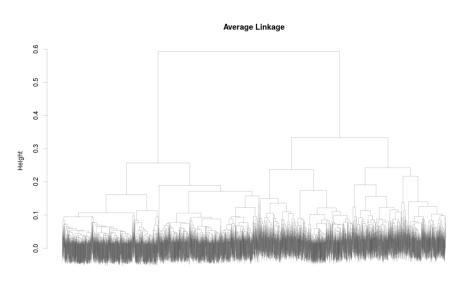
$$i, j \leftarrow \underset{\{i, j: i < j, i, j \in N\}}{\operatorname{argmin}} d_C(C_{ik}, C_{jk}).$$

► The "height" of this cluster merger is

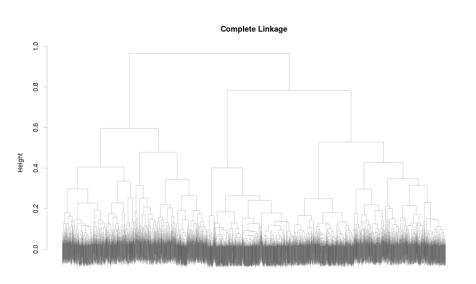
$$h_k = d_C(C_{ik}, C_{jk})$$

- ▶ The sequence h_n, \ldots, h_2 is monotonically increasing.
- ▶ Plot with heights of cluster mergers is a **dendogram**.

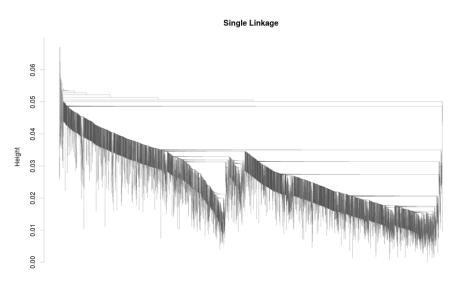
Average Linkage



Complete Linkage



Single Linkage



Number of Clusters, Quality of Clustering

- Quantification of success in <u>classification</u> is (relatively) objective and easy.
- ▶ Quantification of success in clustering is more subjective.
 - General measures output by clustering method.
 - ► Cophenetic distance.
 - ► Confusion matrix to compare clustering methods.
 - Application specific measures.
 - ► Scatter in composites.
 - Physical interpretation of clusters.

Cophenetic Distance

▶ The ordinary distance between x_i and x_j is

$$d_{ij}=d(x_i,x_j)$$

▶ Suppose x_i and x_j first share cluster C_{lk} ie $x_i, x_j \in C_{lk}$, $x_i \in C_{m(k+1)}, x_j \in C_{q(k+1)}, C_{m(k+1)} \neq C_{q(k+1)}$. The cophenetic distance between x_i and x_j is

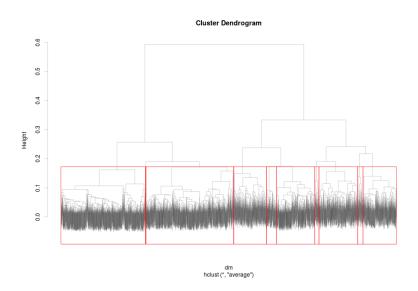
$$d_{ij}^{C} = d_{C}(C_{m(k+1)}, C_{q(k+1)})$$

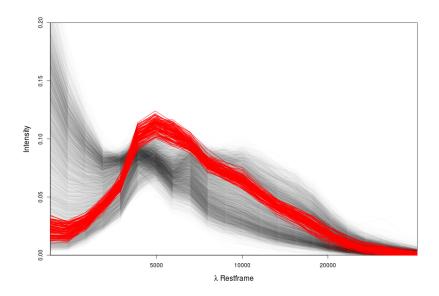
▶ The cophenetic correlation coefficient is

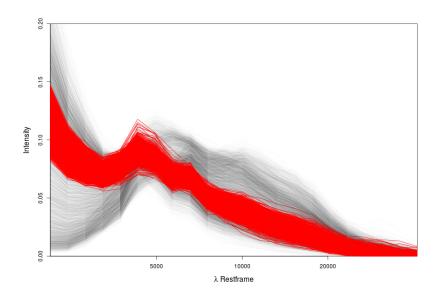
$$corr(d_{ij}, d_{ij}^{C})$$

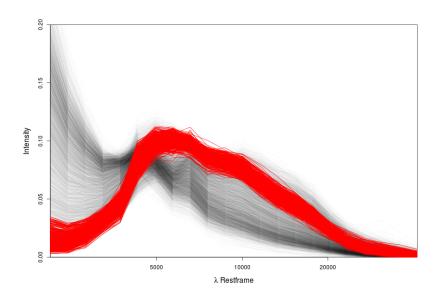
► For average linkage clustering cophenetic correlation is 0.81.

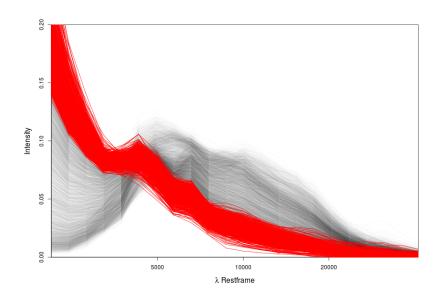
Visualize 10 Clusters for Average Link

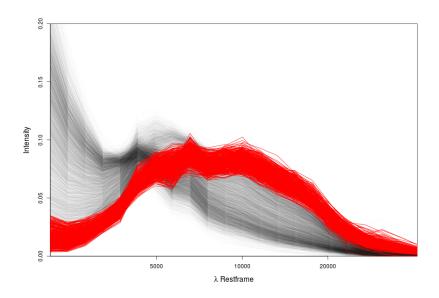


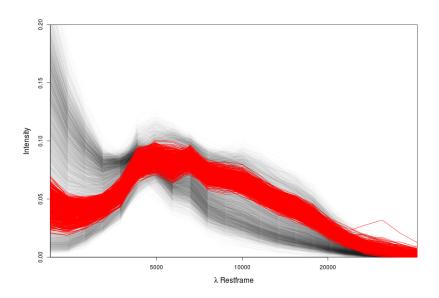


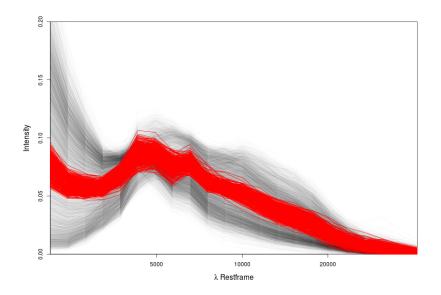


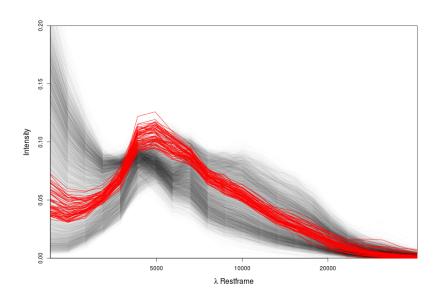


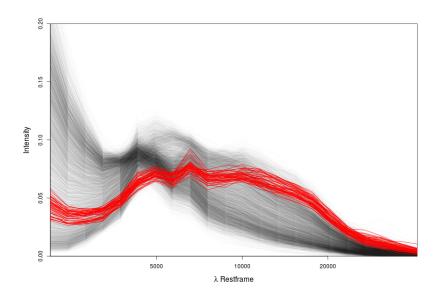


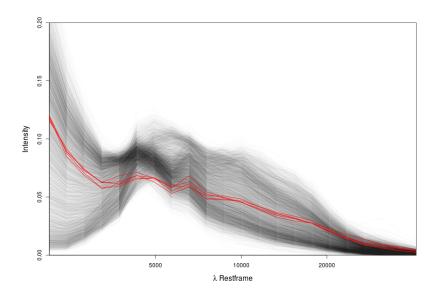












Is Clustering the Right Tool?

- Photometry lies on some low dimension linear subspace:
 - ► Principal Components Analysis
- ▶ Photometry lies on some low dimension non-linear subspace:
 - Principal Curves and Surfaces
 - Local Linear Embedding
 - Self Organizing Maps
- ► Model the photometry:

$$x_i(\lambda) = g_{\theta_i}(\lambda)$$

 $\theta_i \in \mathbb{R}^d$
 $\theta_i \sim f_{\theta_i} iid$