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Clustering References

I Elements of Statistical Learning (Tibshirani, Hastie, Friedman)

I Chapter 14.3
I http://statweb.stanford.edu/~tibs/ElemStatLearn/

I Statistics, Data Mining, and Machine Learning in
Astronomy (Ivezic, et al)

I Section 6.4

I Modern Statistical Methods for Astronomy (Feigelson, Babu)

I Sections 9.2 – 9.5
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What is clustering?

clustering: a partition of the data into sets
I objects in the same cluster (set) are “similar”
I objects in different clusters are “different”

Objects could be light curves, images, galaxy photometry.
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Normalized Rest Frame Synthetic Photometry
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Notation, Data Dimension, and Clustering

I X ∈ Rn×p

I n is number of observations (galaxies)
I p is number of variables / features
I xi ∈ Rp is i th observation

I p is called the dimension of the data.

I Clustering methods useful for “high” dimensional (p > 3) data
where we do not have a priori have idea of structure.
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Types of Clustering Methods

I Dissimilarity (distance) based
I Compute dissimilarity between every pair of objects.
I Similar objects in same cluster, dissimilar objects in different

clusters.

I Model based
I Construct (mixture) model and estimate parameters.
I Object belongs to component in mixture.
I eg mixture of Gaussians

I Centroid based
I Find cluster centers (centroids).
I Object belongs to closest centroid.
I eg. k–means
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Generic Dissimilarity (Distance) Measures

Let xiλ be the flux at filter λ for observation i .

Squared Euclidean Dissimilarity:

d(xi , xj) =
∑
λ

(xiλ − xjλ)2

More generally:

d(xi , xj) =
∑
λ

|xiλ − xjλ|p

Even more general:

d(xi , xj) =
∑
λ

w(λ)|xiλ − xjλ|p

Note: The log scale implicitly imposes a weight w .
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Building Invariances into Dissimilarity Measures

A galaxy identical to xi but at a different (physical) distance will have
flux axi where a is some constant. Therefore we should choose d
such that

d(xi , xj) = d(axi , bxj)∀a, b (1)

One possibility is

d(xi , xj) =
∑
λ

(
xiλ∑
λ xiλ

− xjλ∑
λ xjλ

)2

Or simply normalize rest frame SEDs

xi →
xi∑
λ xiλ

8 / 33



Kriek 2011 Dissimilarity

d(xi , xj) =

√∑
λ(xiλ − a12xjλ)2∑

x2
iλ

where

a12 =

∑
xiλxjλ∑

x2
jλ

I d satisfies invariance relation (1).

I d(xi , xj) are contained in AS689 b.dat.
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Other Ideas for Dissimilarity

I Derivatives (synthetic photometry is functional data)

I Extract “features”, compute distances in feature space

I Dynamic Time Warping (distance in x,y space)

I Invariances to errors in photometric redshift
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Dissimilarity Based Clustering Methods

I Kriek 2011

I Hierarchical agglomerative

I Hierarchical divisive

I See references for other methods.
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Kriek 2011 Clustering Method Pseudocode

I N ← {1, . . . , n}
I dij ← d(xi , xj) ∀ i , j ∈ N

I K ← 0

I repeat:
I Ai ← {j : dij < 0.05, j ∈ N} ∀ i ∈ N
I c ← argmax

i
#(Ai )

I if #(Ac) < 19 :
I break

I K ← K + 1
I CK ← {xj : j ∈ N ∩ Ac}
I N ← N\Ac

C1, . . . ,CK are the clusters. Some objects are unclustered.
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Hierarchical Agglomerative Clustering Idea

Main Idea:

I Every observation starts as own cluster.

I Iteratively merge “close” clusters together.

I Iterate until one giant cluster left.

This method is

I Hierarchical: Each iteration produces a clustering, so do not
specify number of clusters in advance.

I Agglomerative: Initially every observation in own cluster.
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Hierarchical Agglomerative Clustering Pseudocode

I N ← {1, . . . , n}
I dij ← d(xi , xj) ∀ i , j ∈ N

I Cin ← {xi} ∀i ∈ N

I for k = n, . . . , 2:
I i , j ← argmin

{i ,j :i<j , i ,j∈N}
dC (Cik ,Cjk)

I Ci(k−1) ← Cik ∪ Cjk

I Cl(k−1) ← Clk ∀l 6= i , j and l ∈ N
I N ← N\{j}

The C·k are the k clusters in the k th level of the hierarchy.
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How to Merge Clusters (What is dC?)

I Average Linkage

dC (Ci ,Cj) =
1

#(Ci)#(Cj)

∑
x∈Ci

∑
x ′∈Cj

d(x , x ′)

I Complete Linkage

dC (Ci ,Cj) = max
x∈Ci ,x ′∈Cj

d(x , x ′)

I Single Linkage

dC (Ci ,Cj) = min
x∈Ci ,x ′∈Cj

d(x , x ′)
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Constructing a Dendogram

I At iteration k

i , j ← argmin
{i ,j :i<j ,i ,j∈N}

dC (Cik ,Cjk).

I The “height” of this cluster merger is

hk = dC (Cik ,Cjk)

I The sequence hn, . . . , h2 is monotonically increasing.

I Plot with heights of cluster mergers is a dendogram.
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Average Linkage

17 / 33



Complete Linkage
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Single Linkage
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Number of Clusters, Quality of Clustering

I Quantification of success in classification is (relatively) objective
and easy.

I Quantification of success in clustering is more subjective.
I General measures output by clustering method.

I Cophenetic distance.
I Confusion matrix to compare clustering methods.

I Application specific measures.
I Scatter in composites.
I Physical interpretation of clusters.
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Cophenetic Distance

I The ordinary distance between xi and xj is

dij = d(xi , xj)

I Suppose xi and xj first share cluster Clk ie xi , xj ∈ Clk ,
xi ∈ Cm(k+1), xj ∈ Cq(k+1), Cm(k+1) 6= Cq(k+1). The cophenetic
distance between xi and xj is

dC
ij = dC (Cm(k+1),Cq(k+1))

I The cophenetic correlation coefficient is

corr(dij , d
C
ij )

I For average linkage clustering cophenetic correlation is 0.81.
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Visualize 10 Clusters for Average Link
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Cluster
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Cluster
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Cluster
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Cluster
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Cluster
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Cluster
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Cluster
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Cluster
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Is Clustering the Right Tool?

I Photometry lies on some low dimension linear subspace:
I Principal Components Analysis

I Photometry lies on some low dimension non-linear subspace:
I Principal Curves and Surfaces
I Local Linear Embedding
I Self Organizing Maps

I Model the photometry:

xi(λ) = gθi (λ)

θi ∈ Rd

θi ∼ fθ iid
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