Local Linear Embedding

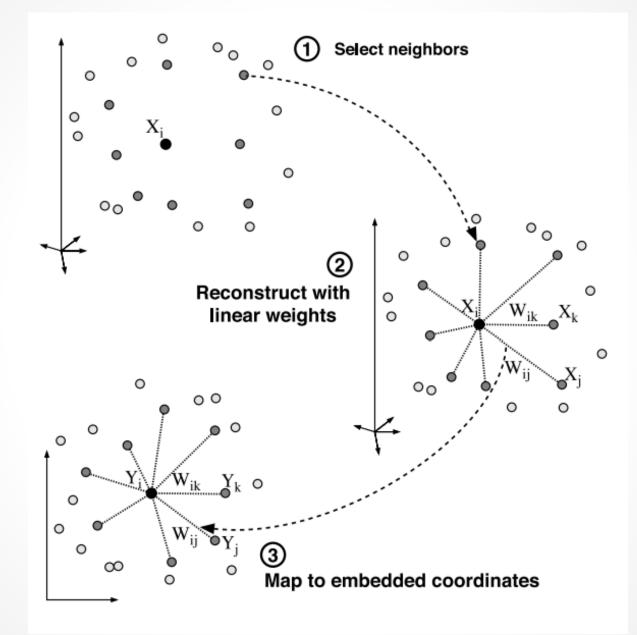
Katelyn Stringer ASTR 689 December 1, 2015

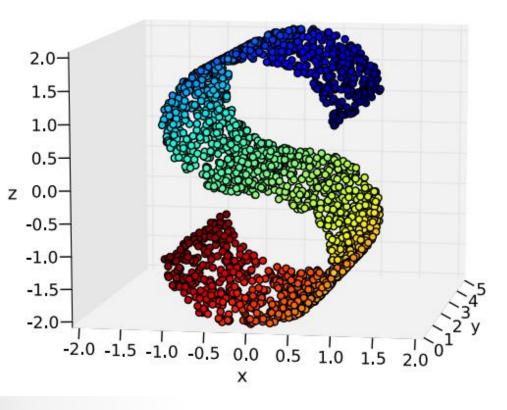
Idea Behind LLE

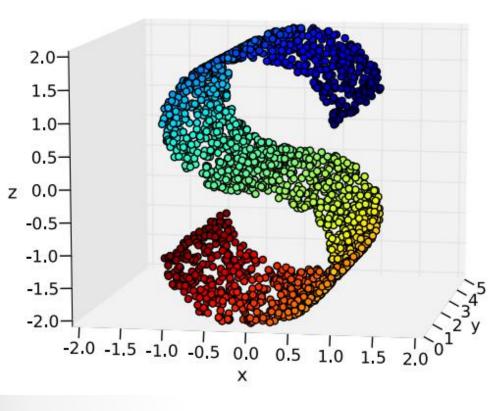
- Good at making nonlinear high-dimensional data easier for computers to analyze
- Example: A high-dimensional surface
- Think derivatives: local tangential hyperplane is a good approximation
- LLE records locations of points on this local tangential manifold based on locations of neighboring points
- It's like describing your address in terms of how far your house is from other buildings

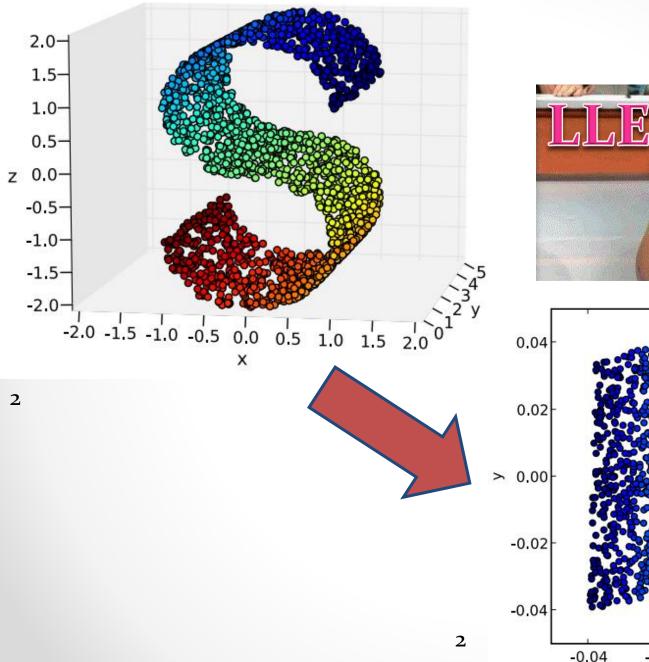
Idea Behind LLE

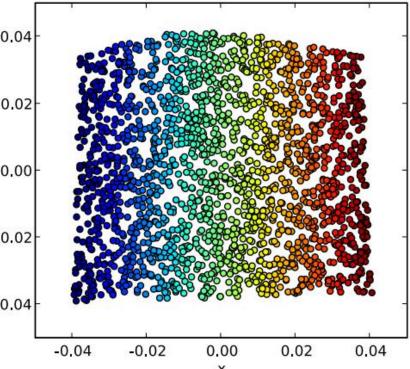
- Good at making nonlinear high-dimensional data easier for computers to analyze
- Example: A high-dimensional surface
- Think derivative with the second approxim
 WHY?
 hyperplane is a second approxim
- LLE records locations of points on this local tangential manifold based on locations of neighboring points
- It's like describing your address in terms of how far your house is from other buildings











Reducing the Dimensionality of Data: Local Linear Embedding of Sloan Galaxy Spectra

Jake Vanderplas, Andrew Connolly (University of Washington)

All of the following images and information came from this paper unless otherwise noted!

The LLE Algorithm

• You have a set of data vectors

 $\mathbf{X} = [\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N], \qquad \mathbf{x}_i \in \mathbb{R}^{D_{in}}$

• Want to map them to coordinate system

 $\mathbf{Y} = [\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N], \quad \mathbf{y}_i \in \mathbb{R}^{D_{\text{out}}}$

 $D_{\rm in} > D_{\rm out}$

 For each data vector x_i, the indices of the K nearest neighbors are represented by

$$\mathbf{n}^{(i)} = [n_1^{(i)}, n_2^{(i)}, \dots, n_K^{(i)}]^T$$

- Assume that each point \boldsymbol{x}_i lies near a locally linear low dimensional manifold
- Find *K* nearest neighbors (based on Euclidean distance)

$$d_{pq} = \sqrt{\sum_{s}^{D_{in}} (X_{ps} - X_{qs})^2}$$

Matrix element

• Find the local covariance matrix

 $(\mathbf{X}_{n_{j}^{(i)}} \text{ is the } j^{th} \text{ nearest neighbor to } \mathbf{x}_{i})$

$$C_{jk}^{(i)} = \left(\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{n_{j}^{(i)}}\right)^{T} \left(\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{n_{k}^{(i)}}\right)$$

• Regularize covariance matrix to produce a stable solution $\mathbf{C}^{(i)} = \mathbf{C}^{(i)} + \delta \operatorname{tr}(\mathbf{C}^{(i)})\mathbf{I}$

(authors used $\delta = 10^{-3}$)

 Determine the optimal weights for each nearest neighbor by minimizing the reconstruction error

$$\mathcal{E}_1^{(i)}(\mathbf{w}^{(i)}) = \left| \mathbf{x}_{\mathbf{i}} - \sum_{j=1}^K w_j^{(i)} \mathbf{x}_{n_j^{(i)}} \right|^2$$

• Impose
$$\sum_{j=1}^{K} w_j^{(i)} = 1$$

 $C_{jk}^{(i)} = (\mathbf{x}_i - \mathbf{x}_{n_j^{(i)}})^T (\mathbf{x}_i - \mathbf{x}_{n_k^{(i)}})$

- Solve $\mathcal{E}_{1}^{(i)}(\mathbf{w}^{(i)}) = \sum_{j=1}^{K} \sum_{k=1}^{K} w_{j}^{(i)} w_{k}^{(i)} C_{jk}^{(i)} + 2\lambda_{i} \left(1 \sum_{j} w_{j}^{(i)}\right)$ for eigenvalues
- Or solve $C^{(i)}w^{(i)} = [1, 1, 1, ..., 1]^T$, for $w^{(i)}$ and scale to 1

- Create overarching W matrix with all the weight vectors as columns, $W_{ji} = 0$ if point j is not a nearest neighbor of point i
- Create matrix $\mathbf{M} = (\mathbf{I} \mathbf{W})(\mathbf{I} \mathbf{W})^T$
- Solve for eigenvalues of $\mathbf{M}\mathbf{y}^{(i)} \lambda_i \mathbf{y}^{(i)} = \mathbf{0}$.
- Eigenvectors y corresponding to D_{out}+1 lowest eigenvalues are the new basis vectors
 (except the first, λ=0 just gives a translation)

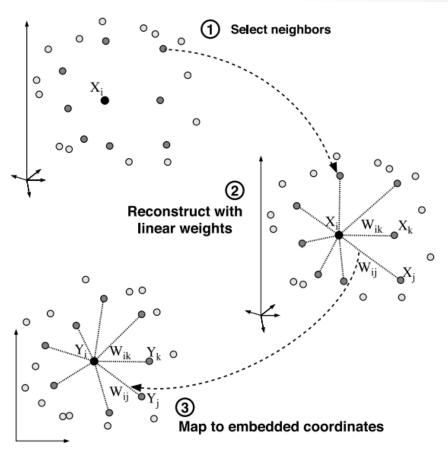
• Errors are given by cost functions:

$$\mathcal{E}_1^{(i)}(\mathbf{w}^{(i)}) = \left| \mathbf{x}_{\mathbf{i}} - \sum_{j=1}^K w_j^{(i)} \mathbf{x}_{n_j^{(i)}} \right|^2.$$

$$\mathcal{E}_2(\mathbf{Y}) = \sum_{i=1}^N \left| \mathbf{y}_i - \sum_{j=1}^K w_j^{(i)} \mathbf{y}_{n_j^{(i)}} \right|$$

LLE Algorithm, Recap

- Find nearest neighbors
- Find weights to map each point in terms of its neighbors
- Find embedded coords
- Use weights to map points in new coords



Our Sloan Spectra Sample

- 8711 total spectra, z < 0.36
- 1000 logarithmic wavelength bins (3800-9800 Å)
- Corrected for sky absorption & normalized
- Equivalent widths, line positions in headers
- Prior Classifications:
 - QSOs = Quasi-Stellar Objects , include Quasars
 - Broad line
 - Narrow line
 - Emission Galaxies
 - Quiescent Galaxies
 - Absorption Galaxies

QSOs: What we look for

- Hydrogen emission lines 3x > noise
- Broad line: larger redshift
 - o Line widths > 1200 km/s

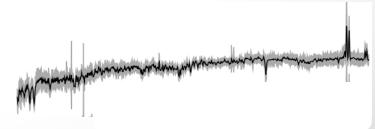
Narrow line: smaller redshift

Galaxies

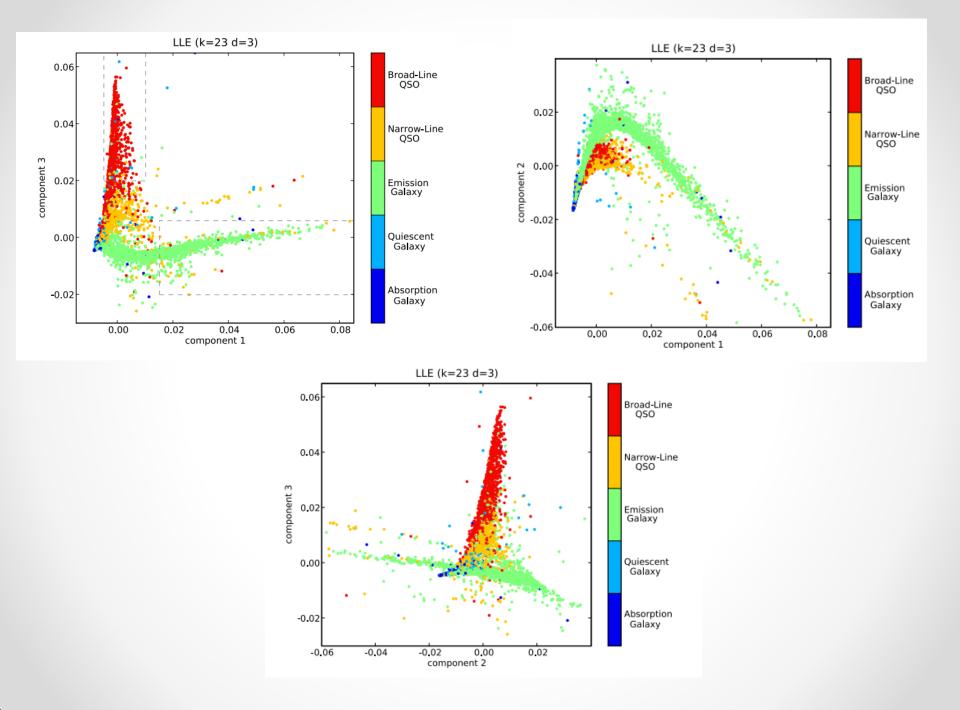
- Emission: Star-forming galaxies
 - Hydrogen emission > 3 x noise

Absorption: Balmer absorption > 3σ

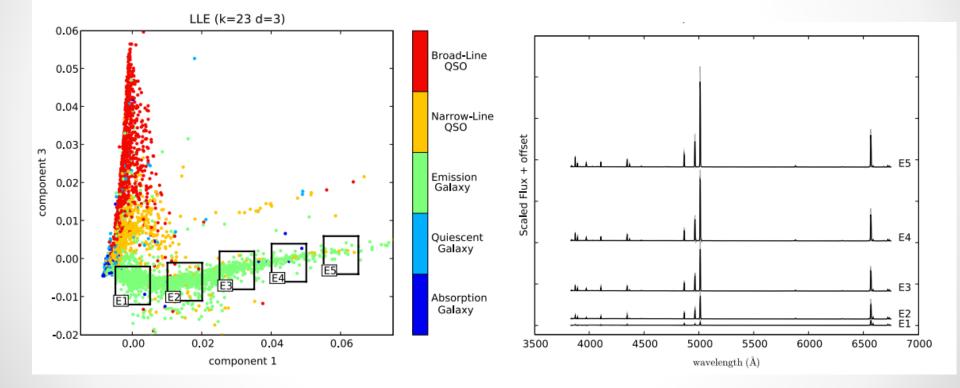
 Quiescent: "red and dead", Balmer emission < 3σ



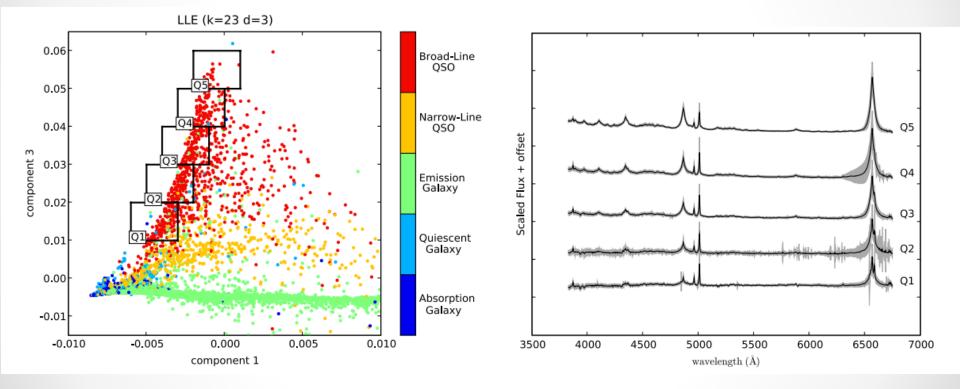
Apply LLE...



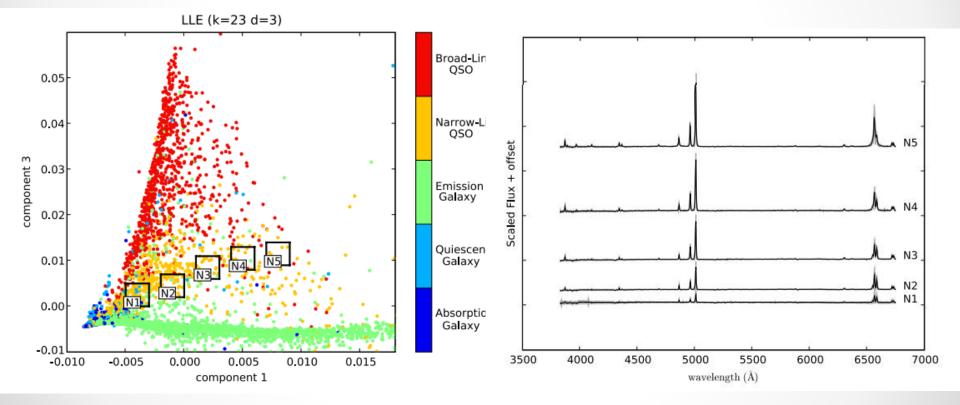
Progression of Emission Galaxy Spectra



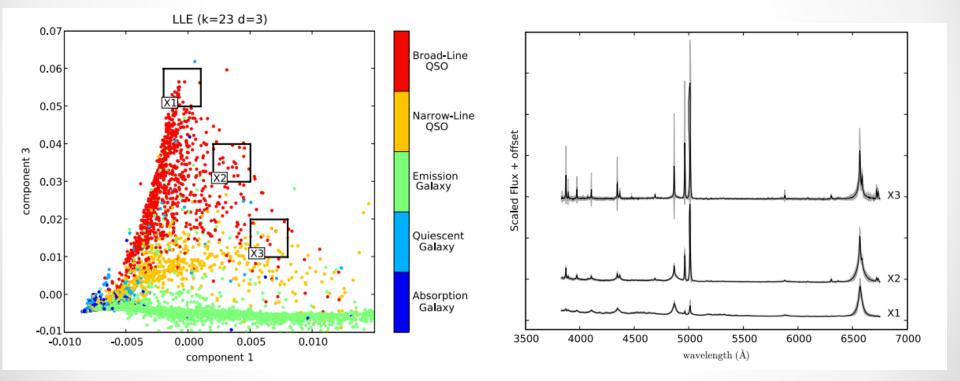
Progression of Broad-Line QSO Spectra



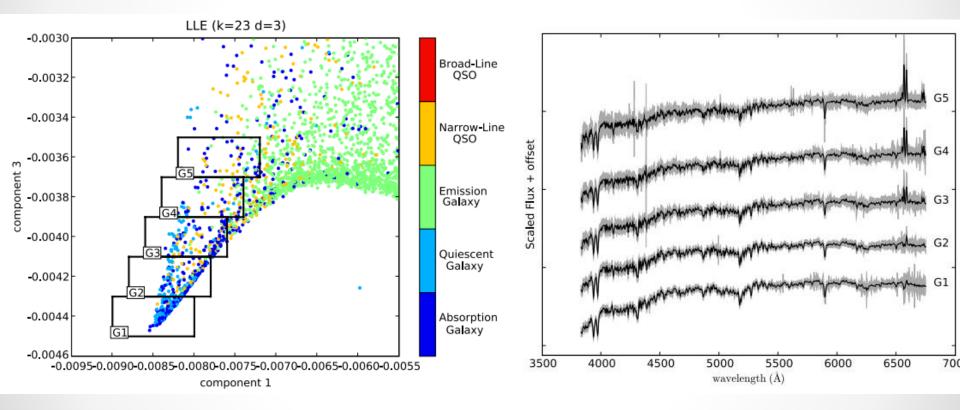
Progression of Narrow-Line QSO Spectra



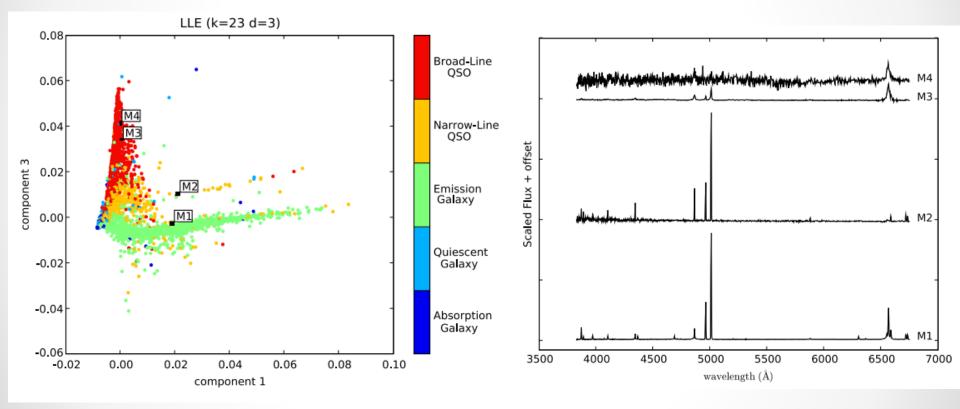
Progression from Broad to Narrow-Line QSOs



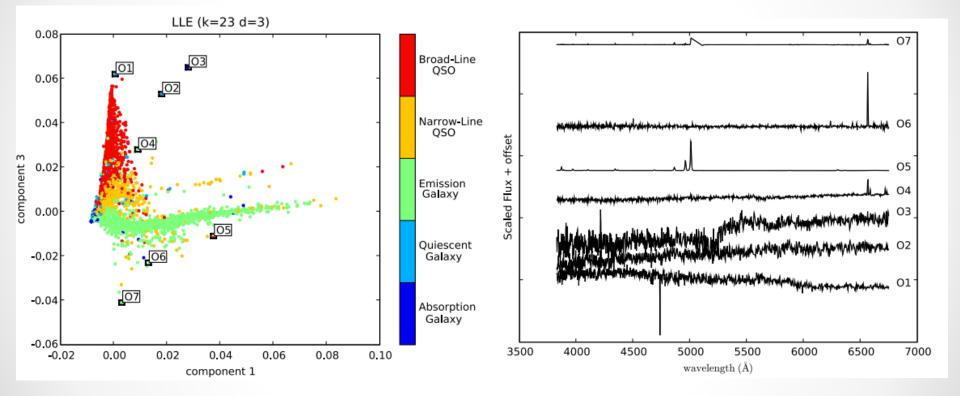
Progression of Quiescent Galaxy Spectra



Objects Misclassified by Sloan

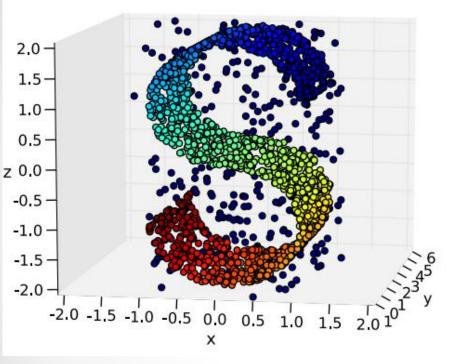


Outliers Found with LLE

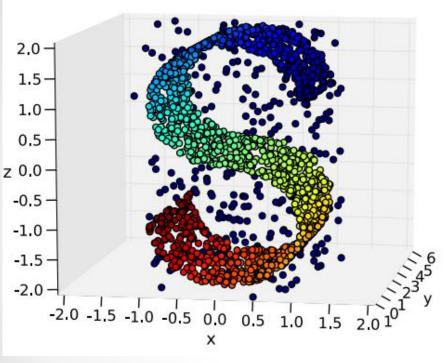


How to keep outliers from skewing your results?

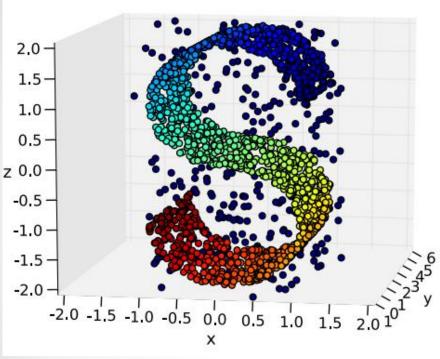
Must Account for Outliers!

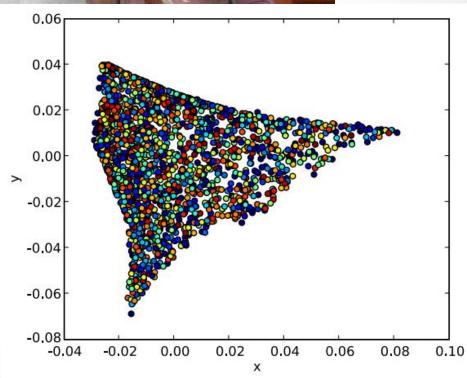


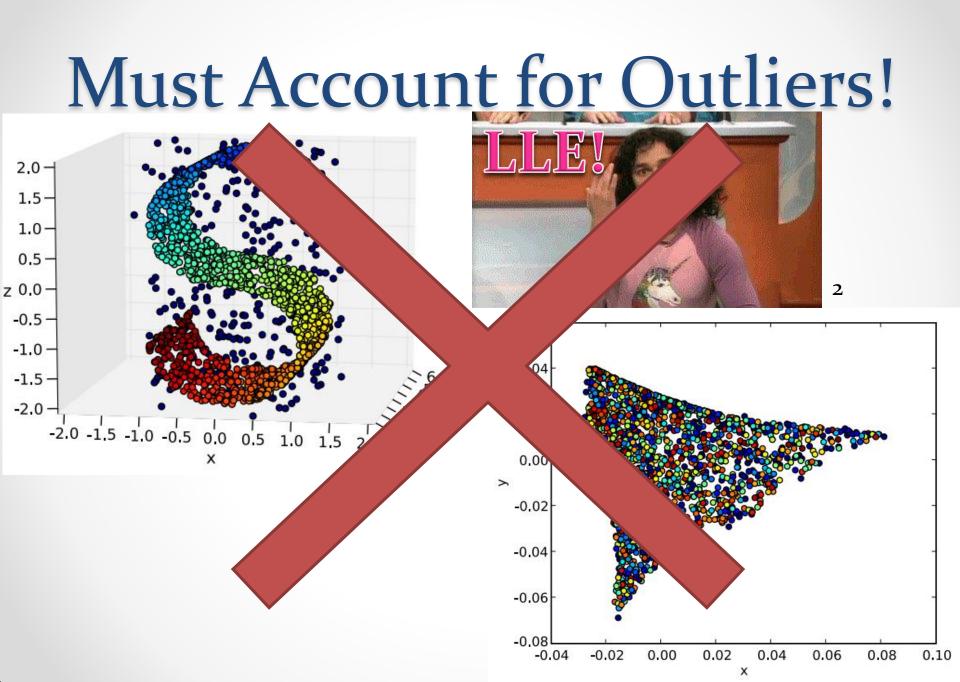
Must Account for Outliers!



Must Account for Outliers!



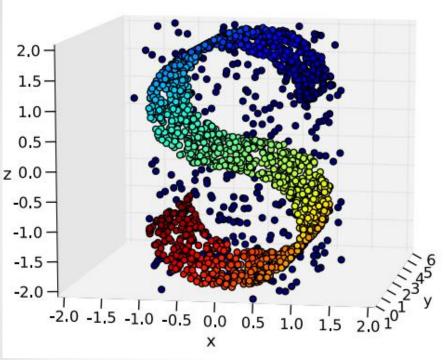


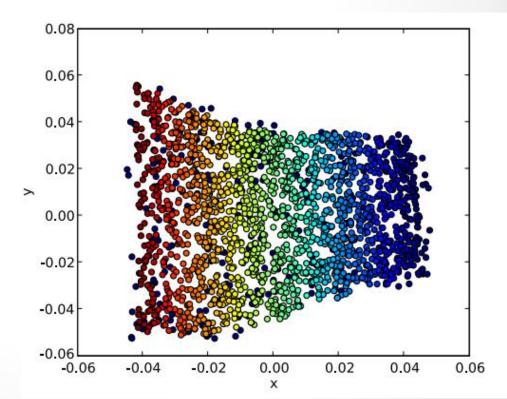


Robust LLE (RLLE)

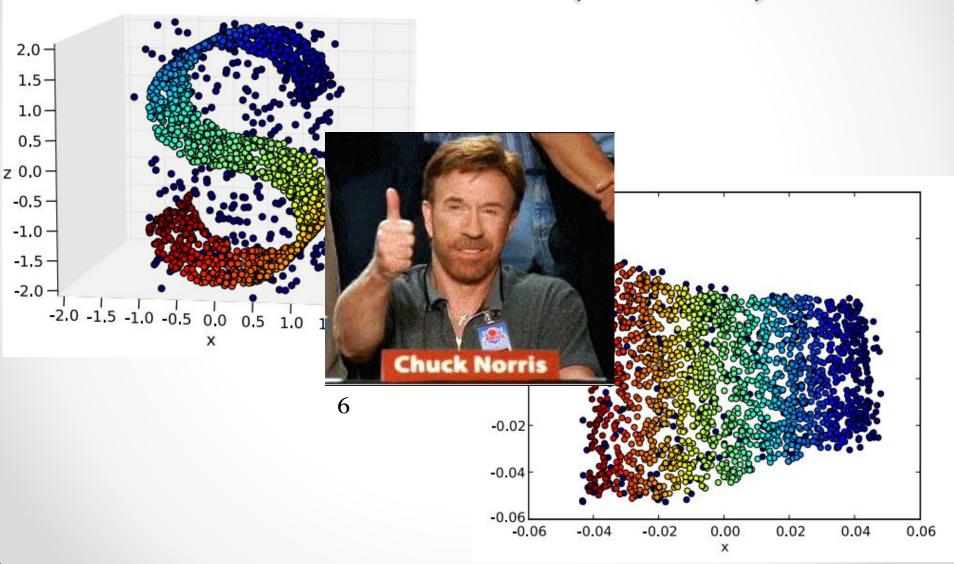
- Assign a "reliability score" to each data vector
- Outliers will not:
 - be a part of many local neighborhoods
 - lie near the best-fit hyperplane
- Perform an *iteratively reweighted least-squares reduction* on each data point to determine optimal weights for PCA reconstruction of data
 - Like finding best-fit hyperplane and determining each point's distance from it
 - Result: assigns local weights to each point for its contribution to local tangent space
- Sum all the local weights for each neighborhood
- Low reliability scores = outliers

Robust LLE (RLLE)





Robust LLE (RLLE)

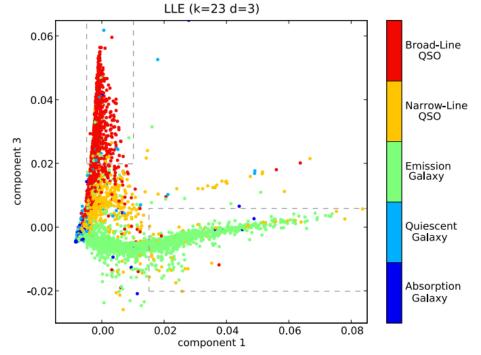


Choosing the Value of K

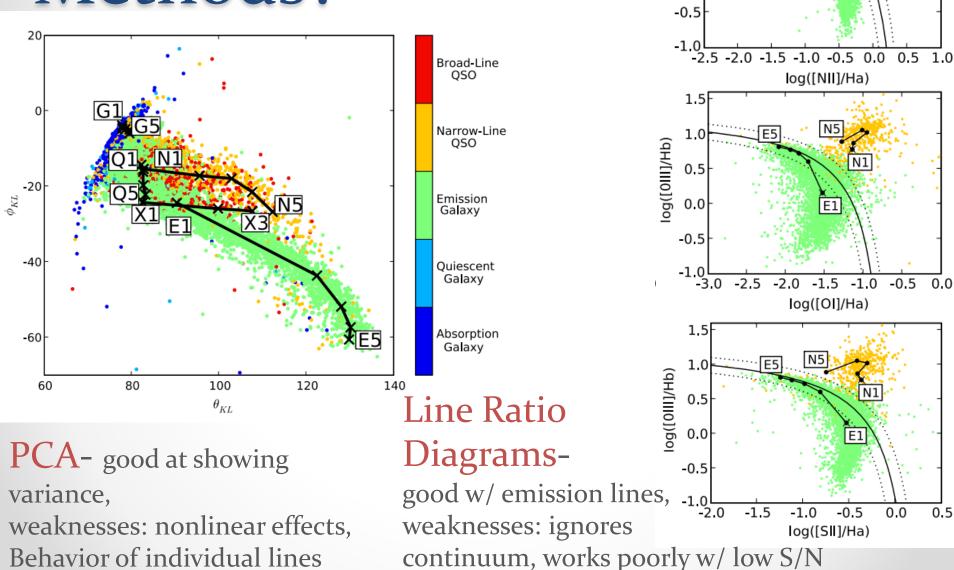
- Too small: undersampled, lose too much information
 results easily skewed by outliers and noise
- Too large: manifold is oversampled, can no longer assume local linearity
 - cannot reduce the dimensions as much
- How do we find the Goldilocks K value?

Finding K: Trial and Error

- Tried values from K=10 to K=30.
- Goal: Maximize the angle between the QSOs and the Emission galaxies
- Optimal K=23



Better than Other Methods?



1.5

1.0

0.5

0.0

(dH\[III0])go

Drawbacks

- High computational costs
- Bottlenecks:
 - Nearest neighbor search
 - Calculating optimal projection vectors
- Strategies:
- sample your data into smaller subsets
 - Vanderplas and Connolly did this! (~150,000 \rightarrow ~9,000 spectra)

Sources

- A. Roweis, S., & Saul, L. 2000, Science, 290, 2323
- B. Vanderplas, Jake, and Andrew Connolly. 2009. "REDUCING THE DIMENSIONALITY OF DATA : LOCALLY LINEAR EMBEDDING OF SLOAN GALAXY SPECTRA," 1365–79. doi:10.1088/0004-6256/138/5/1365.
- C. Saul, Lawrence K, and Sam T Roweis. n.d. "An Introduction to Locally Linear Embedding," https://www.cs.nyu.edu/~roweis/lle/papers/lleintro .pdf.

Image Credits

- 1. http://web.stanford.edu/class/ee378b/papers/roweis.pdf
- http://iopscience.iop.org/article/10.1088/0004-6256/138/5/1365/pdf
- 3. https://i.imgur.com/96t6l9mh.jpg
- 4. https://twitter.com/jakevdp
- 5. http://www.washington.edu/storycentral/story/scanningthe-sky/connolly-andrew-11/
- 6. http://theactionelite.com/2012/07/the-return-of-chucknorris/