

Principal Components Analysis

James Long

November 17, 2015

► Elements of Statistical Learning (Tibshirani, Hastie, Friedman)

- Chapter 14.5
- http://statweb.stanford.edu/~tibs/ElemStatLearn/
- ► Functional Data Analysis Ramsay and Silverman
 - Chapters 8 and 9
- Statistics, Data Mining, and Machine Learning in Astronomy (Ivezic, et al)
 - ► Section 7.3
- ► Modern Statistical Methods for Astronomy (Feigelson, Babu)
 - Section 8.4.2

Synthetic Photometry

• $X \in \mathbb{R}^{n \times p}$ is synthetic photometry

- n = 3984 is number of galaxies
- p = 22 is number of synthetic filters
- $x_i \in \mathbb{R}^p$ is i^{th} row of X
- ▶ *p* is the "dimension" of the data
- ► Sometimes the vectors x_i are all (approximately) in some lower dimensional subspace of ℝ^p
- Finding and characterizing this subspace is called "dimension reduction"

Dimension Reduction Example

Consider

$$\{(x_{i1}, x_{i2})\}_{i=1}^n$$

the first two dimensions of synthetic photometry for each observation.

Message:

- The intrinsic dimension is 1.
- ▶ We can compress the two dimensional data into 1 dimension.

Principal Components Analysis (PCA) Idea

- ► Realign axes so
 - Most variation on first axis
 - Second most variation on second axis
 - ▶ . . .
- ► Ignore higher axes because minimal variation in these directions.
- The principal components describe how the new axes map to the old axis.

PCA is typically applied to a scaled version of X.

$$X' = (X - 1\mu^T)S^{-1}$$

- Remove column means (μ)
- Scale column variances to 1.
 - S is diagonal with S_{jj} = standard deviation column j of X

Scaled Data Matrix X'

PCA Math – Singular Value Decomposition

The singular value decomposition of X' (assuming n > p) is

 $X' = U \Sigma V^T$

where

- U is $n \times p$ with $U^T U = I^1$
 - The data in the new coordinate system.
- V is $p \times p$ with $V^T V = I$
 - ► V rotates the new coordinates to the old coordinates.
- Σ is $p \times p$ diagonal with $\Sigma_{jj} > \Sigma_{ii}$ for $j < i^2$
 - Σ <u>scales</u> the new coordinates to the old coordinates.

¹U is $n \times p$ in R and $n \times n$ in theory.

 $^{^{2}\}Sigma$ is $p \times p$ in R and $n \times p$ in theory.

Reconstructing the data

• A $q \leq p$ dimensional reconstruction of X' (in R notation) is

$$X'_q = U[, 1:q]\Sigma[1:q, 1:q]V[, 1:q]^7$$

▶ If the data lies (approximately) on a *q* dimensional subspace then

 $X'_q \approx X'$

Obtain an approximation of the original data

$$X_q = X'_q S + 1\mu^T$$

and

 $X_q \approx X$

For functional data we can do a visual check.

Synthetic Photometry

Reconstruction with q = 1 Principal Component

Reconstruction with q = 2 Principal Components

Reconstruction with q = 3 Principal Components

Reconstruction with q = 4 Principal Components

Reconstruction with q = 5 Principal Components

Synthetic Photometry

What's Happening in the SVD Formula

• We see $X_q \approx X$ for q = 2. • So $X'_q = U[, 1:q]\Sigma[1:q, 1:q]V[, 1:q]^T \approx U\Sigma V^T = X'$ • So Σ_{ii} for j > 2 are small.

Scree Plot

- y-axis values \sum_{jj}^2/n (sum to p = 22)
- Most variation can be explained by a small number of principal components.
- ► This plot is helpful for deciding how many PCs to use (choose q).

Principal Components (U[, 1:5])

Principal Components with Hierarchical Clustering

Principal Components with Hierarchical Clustering

Principal Components ($\overline{U[, 1:2]}$)

Two Principal Components V[, 1:2]

First q = 2 columns of U: $X_q = (U[, 1:q]\Sigma[1:q, 1:q]V[, 1:q]^T)S + 1\mu^T$

- Are there actually clusters in the data or a continuous set of shapes that can be characterized by 2 or 3 values (principal components)?
- Continuous composities: For any galaxy we can calculate "neighbors" in PC space and make composites based on neighbors.

- Non-negative matrix factorization
 - ► Chapter 14.6 of Hastie, Tibshirani, Friedman
- Functional principal components analysis (FPCA)
 - PCA here required synthetic photometry at same wavelengths.
 FPCA could be applied to restframe actual photometry.