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Dimension Reduction

» X € R"*P is synthetic photometry
» n = 3984 is number of galaxies
» p = 22 is number of synthetic filters
» x; € RP is ith row of X

v

p is the “dimension” of the data

v

Sometimes the vectors x; are all (approximately) in some lower
dimensional subspace of RP

v

Finding and characterizing this subspace is called “dimension
reduction”
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Dimension Reduction Example

Consider
{(xi1, xi2) } iy

the first two dimensions of synthetic photometry for each observation.

0.25

Message:
» The intrinsic dimension is 1.

» We can compress the two dimensional data into 1 dimension.
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Principal Components Analysis (PCA) Idea

» Realign axes so
» Most variation on first axis
» Second most variation on second axis
> L.
» Ignore higher axes because minimal variation in these directions.
» The principal components describe how the new axes map to the
old axis.

PCA is typically applied to a scaled version of X.
X' =(X—-1u")St

» Remove column means (u)
» Scale column variances to 1.
» S is diagonal with §j; = standard deviation column j of X
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Scaled Data Matrix X’
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PCA Math — Singular Value Decomposition

The singular value decomposition of X’ (assuming n > p) is
X =Uzv’

where
» Uisnx pwith UTU = 1!
» The data in the new coordinate system.
» Vispxpwith VTV =1
» V rotates the new coordinates to the old coordinates.
» ¥ is p X p diagonal with £;; > ¥ for j < i 2
» > scales the new coordinates to the old coordinates.

1Uisn><pinRandn>< n in theory.

2Zisp>< pinRand n X pin theory.
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Reconstructing the data

» A g < p dimensional reconstruction of X’ (in R notation) is
_ : I T
Xy = U[, 1:q]x[L:q, 1:q] V[, 1:q]
» If the data lies (approximately) on a g dimensional subspace then
X=X
» Obtain an approximation of the original data
Xg=X,S+1u"

and
Xg= X

For functional data we can do a visual check.
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Synthetic Photometry
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Reconstruction with g = 1 Principal Component
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Reconstruction with g = 2 Principal Components
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Reconstruction with ¢ = 3 Principal Components
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Reconstruction with g = 4 Principal Components
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Reconstruction with ¢ = 5 Principal Components
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Synthetic Photometry
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What's Happening in the SVD Formula

» We see

Q
<

for g = 2.
» So
_ : . T~ T _
X, = U[,1:.q]x[1:q,1:q] V[, 1:q] = ULV" = X'

» So X for j > 2 are small.
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Scree Plot

Normalized Squared Singular Values (Eigenvalue of Correlation Matrix)

PC Index

> y-axis values X5 /n (sum to p = 22)

» Most variation can be explained by a small number of principal
components.

» This plot is helpful for deciding how many PCs to use (choose q).
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Principal Components (U[, 1:5])
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Principal Components with Hierarchical Clustering
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Principal Components with Hierarchical Clustering
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Principal Components (U], 1:2])
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Two Principal Components V[, 1:2]
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Uses of Result

» Are there actually clusters in the data or a continuous set of
shapes that can be characterized by 2 or 3 values (principal
components)?

» Continuous composities: For any galaxy we can calculate
“neighbors” in PC space and make composites based on
neighbors.

24 /25



Related Methods

» Non—negative matrix factorization
» Chapter 14.6 of Hastie, Tibshirani, Friedman
» Functional principal components analysis (FPCA)

» PCA here required synthetic photometry at same wavelengths.
FPCA could be applied to restframe actual photometry.
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