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Regression

I y is approximately some function of x

y = f (x) + ε

I Regression is used to:

1. Estimate f .
2. Quantify uncertainty in estimate of f .
3. Predict y values for new x .

I Common to assume linear relation:

f (x) = β0 + β1x .

I Linear regression is often complicated in astronomy due to
measurement error and censoring.
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Example: Eddington Ratio (see [1])

I ΓX and log Lbol/Ledd are both measured with error (cross).
I There is intrinsic scatter ie even if no measurement error

in x and y , still not a perfect linear relation. 5 / 43



Example: Period Luminosity Relation
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I Roughly a linear relationship between luminosity and log(period).
I With poorly sampled light curves, measurement error in period.
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Supernovae Cosmology (from [2])

I Non–linear relationship between distance modulus and redshift.
I Equations from cosmology determine model form.
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Perfect Linear Relationship
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Intrinsic Scatter
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Heteroskedastic Measurement Error on x and y
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Censoring of x
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Outline of Next Four Lectures

I Oct. 20: Background, Heteroskedasticity, Intrinsic Scatter

I Oct. 22: Errors–in–variables (measurement error in x)

I Oct. 27: Bayesian Methods for Linear Regression I

I Oct. 29: Bayesian Methods for Linear Regression II
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Introduction

Linear Regression Basics
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Ordinary Least Squares Model

I σxi = σyi = 0 for all i

I yi = β0 + β1xi + εi where εi ∼ N(0, σ2)

I Parameters: (σ2, β0, β1).

I Only intrinsic scatter present.
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Estimate (σ2, β0, β1) with Maximum Likelihood

σ̂2, β̂0, β̂1 = argmax
(σ2,β0,β1)

L((σ2, β0, β1)|D)

= argmax
(σ2,β0,β1)

n∏
i=1

1√
2πσ2

e−(yi−β0−β1xi )2/(2σ2)

After some calculus

β̂0 = ȳ − β̂1x̄

β̂1 =
n−1

∑
xiyi − x̄ ȳ

n−1
∑

x2i − x̄2

σ̂2 =
1

n

∑
(yi − β̂0 − β̂1)2

Can replace 1/n with 1/(n − 2) in σ̂2 formula.
15 / 43



Use Matrices

Y =


y1
y2
...
yn

 ∈ Rn×1 X =


1 x1
1 x2
...

...
1 xn

 ∈ Rn×2 ε ∼ N(0, σ2I ) ∈ Rn×1

β =

(
β0
β1

)
Linear regression is now

Y = Xβ + ε

Maximum Likelihood in Matrix Form

β̂ = (XTX )−1XTY

σ̂2 = n−1(Y − X β̂)T (Y − X β̂)
16 / 43



Uncertainty on β

I We are in frequentist mode (no priors).

I Assess uncertainty with sampling distribution:

1. Repeat data collection process over and over.
2. Compute β̂ each time.
3. Uncertainty on β̂ is some function (usually variance) of

sampling distribution.
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2

4
6

8
10

x

y

Truth
Estimate

●

1.5 2.0 2.5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

β̂0

β̂ 1

●
● ●

●

●

●

●

True Parameters
Estimates

22 / 43



Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1

Repeat 89 more times.
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Example: β = (2, 1.5)T , σ2 = 1
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Covariance of β

Covariance (based on simulation) is:

Cov (β̂) =

(
0.080 −0.029
−0.029 0.012

)

So

sd(β̂0) =

√
Var (β̂0) ≈

√
0.08 ≈ 0.28

sd(β̂1) =

√
Var (β̂1) ≈

√
0.012 ≈ 0.11

Simulation Has Major Weaknesses:

I What about β 6= (2, 1.5)T or σ2 6= 1?

I Since I don’t know β or σ2, how can this be used?
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Better Solution: Statistical Theory

Var (β̂) = Var ((XTX )−1XTY )

= Var ((XTX )−1XT (Xβ + ε))

= Var (β + (XTX )−1XT ε)

= (XTX )−1XTVar (ε)X (XTX )−1)

= σ2(XTX )−1

So
V̂ar (β̂) = σ̂2(XTX )−1

Variances for β̂0 and β̂1 are derived from this. n is “built–into” XTX .
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For First Simulation Run
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β̂ =

(
1.70
1.58

)
V̂ar (β̂) =

(
0.087 −0.030
−0.030 0.012

)
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Weighted Least Squares

I Intrinsic scatter is 0.

I σxi = 0 for all i .

I σyi 6= 0

In statistics this is called heteroskedastic measurement error.

Statistical Model:
Y = Xβ + ε

where
ε ∼ N(0,Σ)

where Σ is a diagonal matrix with Σii = σ2
yi .

(non–matrix form)
yi = β0 + β1xi + εi

where εi ∼ N(0, σ2
yi ) independent across i .
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Example
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This model only accounts for measurement error in y , not intrinsic
scatter.
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Maximum Likelihood for Heteroskedastic Error

I Trick: ε ∼ N(0,Σ) and

Y = Xβ + ε

is the same as

Σ−1/2Y = Σ−1/2Xβ + Σ−1/2ε

where Σ−1/2ε ∼ N(0, I ).

I Maximum Likelihood from the homoskedastic case tells us

β̂ = (XTΣ−1X )−1XTΣ−1Y

Or write out likelihood, take derivatives, set equal to 0, solve.

35 / 43



Uncertainty on β̂

Recall from OLS model

Var (β̂) = σ2(XTX )−1.

With heteroskedastic error X → Σ−1/2X and σ → 1, so

Var (β̂) = (XTΣ−1X )−1.
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Outline

Introduction

Linear Regression Basics

Intrinsic Scatter and Heteroskedastic y Error
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Intrinsic Scatter + Measurement Error

I First model (OLS) covered intrinsic scatter, but no measurement
error in y .

I Second model (WLS) covered measurement error in y , but no
intrinsic scatter.

Intrinsic Scatter and y (Normal) Measurement Error

Y = Xβ + ε

where
ε ∼ N(0,Σ)

where Σ is a diagonal matrix with Σii = σ2 + σ2
yi .

β and σ are unknown parameters.
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General Weighted Least Squares Estimators

I Let W be a diagonal weight matrix.

I Consider estimators of the form

β̂(W ) = (XTWX )−1XTWY .

Possible Weight Matrices:

I W1,ii = 1

I W2,ii = σ−2
yi

I W3,ii = (σ2
yi + σ2)−1

Recall W3 is not known because σ2 is unknown.
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β = (2, 1.5)T , σ = 0.1 with Heteroskedastic Error
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What is sampling distribution using W1,W2, and W3?
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Sampling Distributions
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W3 is best, but it depends on σ which is unknown.
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Maximum Likelihood with Intrinsic Scatter

σ̂2, β̂0, β̂1 = argmax
(σ2,β0,β1)

L((σ2, β0, β1)|D)

= argmax
(σ2,β0,β1)

n∏
i=1

1√
2π(σ2 + σ2

i )
e−(yi−β0−β1xi )2/(2(σ2+σ2

i ))

I No closed form solution.

I But at fixed σ, closed form solution.

I Evaluate likelihood at each σ in grid.

I Choose value of σ which maximizes likelihood.
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