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Intrinsic Scatter Continued
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Intrinsic Scatter + Measurement Error

Intrinsic Scatter and y (Normal) Measurement Error
Y =X3+¢

where

e~ N(0,X)
where X is a diagonal matrix with ¥ = 0® 4 07;.

B = (o, 41) and o2 are unknown parameters.
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Maximum Likelihood with Intrinsic Scatter

827 3\07 B\l = argmax L((sz ﬁ07 51)‘D)
(027B0761)

n

= argmax H L

(U2vﬁ0:ﬁl) i=1 27T(U2 + 0'12)

e—()/i—ﬁo—ﬁlxi)z/(2(02+‘7,'2))

n

= argmin Z (Iog(a2 +07) +
(027ﬁ07ﬁ1) i=1

(vi — Bo — 51Xi)2)
(02 +07)

» No closed form solution.

» But at fixed o, closed form solution.
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Minimization Procedure

Define W(o?) to be diagonal matrix with W (o?); = (02 + 02)7L.

n

52, Bo, By = argmin Z log(c? + 0?) + (Y — XB) " W(a?)(Y — XA)
(02,60,61) j—1
So

— | + Y — XB)TW(eH)(Y — X
52 arg;pmglﬁnlz OgO U +( B) () B)

= argmin Z log(0? + 02) + (Y — XB(62))T W(a>)(Y — XB(c?))

—SSML(02)
where R
B(o?) = (XTW (X)X W(o?)Y
> Grid search on o to find .

» 5= [5(0).

6/33



“X? Minimization” for Estimating Parameters

2 E (Yi—ﬁo—ﬁlxi)2
X_,Z_; (02 + 0?)

» One could minimize chi-squared:

627 ﬁ0> 51 = argmin X2

02,580,681
» Computational issue is same as with ML, but at fixed o2 easy.
So compute:
~2 . . 2
0 = argmin min

go'2 Bo,B1 X
N——
=S5Sx2(02)
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1.0 15 2.0 25 3.0 35 4.0

Parameters: 3y =2, 31 = 1.5, 02 = 0.12
Data: {(y,-,x,-,(fy,')},'-'zl
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Maximum Likelihood
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Looks reasonable. 033



Chi-Squared
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x2 — 0 as o — oo. Not good. 10/33



Quantify Uncertainty on ML Estimates

The maximum likelihood estimate for the parameters is

(62, Bo, B1) = (0.0092, 1.9988, 1.5057)

» Since this is simulation we know the truth (0.01,2, 1.5).
» In practice, need to report uncertainty on our estimates.

Sampling Distribution
» Generate the data many times.
» Calculate (52, By, 81) each time.

» Calculate variance of resulting data.
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Empirical Sampling Distribution of ML Estimator
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Red point is truth. Blue point is our 1 actual sample ML estimates.



Variance of (62, B)

Variance (based on simulation) is:

R 9.46 x 107 —1.76 x 107® 1.27 x 10~°
Var ((6%,8)) = | -1.76 x 107® 331 x 1073 —1.23x 1073

127 x107% —123x103 497 x10°*
So

sd(5?) = \/Var (52) =~ v/9.46 x 106 ~ 0.0031

sd(Bo) = \/Var (Bo) ~ v/3.31 x 103 ~ 0.0576

sd(B1) = \/Var (B1) ~ V4.97 x 10-* ~ 0.0223

Simulation Has Major Weaknesses:
» What about 3 # (2,1.5)7 or 0 # 0.12?
» Since | don't know 3 or o, how can this be used?
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Analytic Method

-~

Var () = Var ((3, 30731))
_ Var (argmin i <|og(a2 +o?)+ (vi = Bo — BlXi)2>)

(02,80,81) =1 (0% + 012)

=ummm. . .

Need more powerful statistical tools.
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Cramer—Rao Bound and Fisher Information
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Selecting an Estimator

There are an infinite number of estimators for any problem:

#1 = maximum likelihood estimator
0, = “chi-squared minimization”
03 = (01 + 02)/2

04 = "first estimate #; using chi—squared, then . . .

Which is best?

16 /33



Cramer—Rao Bound

Under regularity conditions on the model, for any (approximately)

unbiased estimator 0 R
Var () = 1(0)~*

where

10) = E

(% log f(xye)) 2

is called the Fisher information matrix.

Significance: Among all possible (approximately) unbiased
estimators, there is a best possible (ie lowest variance) performance.
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Variance of Maximum Likelihood Estimator

Theorem: Under regularity conditions, the maximum likelihood
estimator acheives this bound ie

Var o(0u) ~ 1(6) ™

Significance: You can’t do better than maximum likelihood (when n
is large and model satisfies “regularity” conditions).
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Estimating /(0)!

1(6)! is unknown, but we can estimate it:

(% log f(xye)) 2

E [ “ og f(X]H)}

10) = E

d6?
2

d
i log f(X|0)

= J(GML)

22

|6:§ML

Significance: Not only is maximum likelihood the best, we can
quantify its performance even when there is no closed form solution
to maximizing the likelihood (by computing J(6m)).
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v

n ~ p: Maximum likelihood theory is asymptotic so not
informative at small sample sizes or where the number of
parameters is similar to number of samples.

Nonparametric and semi—parametric models: Nadaraya—\Watson,
Kernel Density Estimators. Maximum likelihood does not work
here.

Bayesian Arguments: The Bayesian says: The sampling
distribution is not what's important.

Prior Information: What if | have pre—existing notions about the
value of 07

Model Misspecification: What if | have an approximate model?
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Application to Intrinsic Scatter

> é\ML = (32730750)

> Var (Ou) ~ J(Op) 2.

d? log(f(X|6)) d?log(f(X|6))
n o (do?)? do?dp
J(Om) = - <d2 log(F(X]0)) T o2 |og(f(x9))> ‘ _
do2dB dp? =01

J(§ML) is the negative Hessian evaluated at éML. Also known as the
observed information.
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Computing J(0.)

o8(F(X[6)) o« —5 3 log(0 + %) — 5(¥ — XB)TW(e?)(Y ~ X5)

So

2 lo(£(X]9)
dp?
TIBIEID Lo +%) 7 = (¥ = X3 WY - X5)
2 og((X19))
do2dp

= -X"W(s?)X

= —YTW(0?)2X + BTXT W(o?)2X
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For the intrinsic scatter problem:
(62, By, B1) = (0.0092,1.9988,1.5057)

and the estimate of the variance is

R 9.36 x 107® 1.75x 10> —9.19 x 107°
Var ((6%,8)) = | 1.75x107° 321x1073 —1.22x1073
—9.19x107® —1.22x10% 5.16 x 107*

This is done using a single sample.
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Estimate, Truth, Sampling Distribution, 95% ClI
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95% Confidence regions. Elliptical regions computed only from 1
sample (blue dot).
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Measurement Error in x
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Simulation
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Simulation

© —-| —— OLS Line From Original Data ° ° ©
—— OLS Line With Measurgment Error
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» lgnoring error in x creates bias in estimators

» This is (in many ways) worse than ignoring intrinsic scatter or
photometric errors in y

» Only increase the variance, not biased.

» Having a large sample size does not help with errors in x.

Essentially
lim Bo # o
n—oo
lim 81 # B
n—oo
In particular R
| lim B3| < |pi]
n—oo
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Simulation with Larger Sample Size
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Simulation with Larger Sample Size

—— OLS Line From Original Data .

—— OLS Line WithsMeasurement Error
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Overview of Solutions

Notation: Observe data {(y;, w;, o)} ;.
w; = X; + 5/

where §; ~ N(0,02). Linear relationship between y and x ie

Yi = Bo + Bixi + €

where ¢; ~ N(0, o).

The x; are unobserved, latent variables.
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Some References

» Section 7.5 in textbook

» “Linear Regression for Astronomical Data with Measurement
Errors and Intrinsic Scatter” Akritas [1]

» “Some aspects of measurement error in linear regression of
astronomical data” Kelly [2]
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