
September 13, 2015
Solutions to HW #1

1. Question 1

(a) The relevant R–code is

> library(smoothmest)

> n <- 10000

> x <- rnorm(n,mean=0,sd=1)

> y <- rdoublex(n,mu=0,lambda=1/sqrt(2))

> plot(density(x),xlim=c(-4,4),

+ col='red',ylim=c(0,.8),

+ xlab="x",ylab="Density",main="")

> lines(density(y),col="black",lty=2)

> legend("topleft",

+ c("Normal","Double Exponential"),

+ col=c("red","black"),

+ lty=1:2)
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The double exponential is more concentrated around 0 but with heavier tails.
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(b) Note that g(x) = x 1
2λ
e−|x|/λ is an odd function ie g(x) = −g(−x). Therefore

E[X] =

∫ ∞
−∞

x
1

2λ
e−|x|/λdx

=

∫ 0

−∞
x

1

2λ
e−|x|/λdx+

∫ ∞
0

x
1

2λ
e−|x|/λdx

= 0

Since the expectation is 0, Var (X) = E[X2]. With the final equality following
from integration by parts twice, we have

Var (X) = E[X2]

=

∫ ∞
−∞

x2

2λ
e−|x|/λdx

=
1

λ

∫ ∞
0

x2e−x/λdx

= 2λ2

Thus the standard deviation is λ
√

2.

(c) The maximum likelihood estimator is

µ̂MLE = argmax
µ

f(~m|µ, λ)

= argmax
µ

∏ 1

2λ
e−|mi−µ|/λ

= argmax
µ

n∑
i=1

log

(
1

2λ
e−|mi−µ|/λ

)
The maximum does not depend on λ in any way so

µ̂MLE = argmax
µ

n∑
i=1

−|mi − µ| = argmin
µ

n∑
i=1

|mi − µ| = median(mi).

(d) We could also estimate µ using the mean of the mi. We call this estimator µ̄
where

µ̄ =
1

n

n∑
i=1

mi

We compare µ̂MLE to µ̄ using a simulation study. The simulation study will
provide some idea as to the form of the sampling distribution. The estimator
with a sampling distribution that is tighter around the true µ (for example, has
a lower MSE), is the better estimator. In order to have a standard deviation of
0.3, λ = 0.3/

√
2. The relevant code is
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> N <- 1000

> n <- 100

> m <- matrix(rdoublex(n*N,mu=18,lambda=0.3/sqrt(2)),nrow=N)

> mean_est <- apply(m,1,mean)

> median_est <- apply(m,1,median)

> plot(density(mean_est),xlim=c(17.9,18.1),

+ col='red',ylim=c(0,20),

+ xlab="estimate",ylab="Density",main="")

> lines(density(median_est),col="black",lty=2)

> legend("topleft",

+ c("Mean","Median"),

+ col=c("red","black"),

+ lty=1:2)
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From the plot, it is clear that the sampling distribution of the median is more
concentrated around the true value of 18 than the mean. Thus the median is a
better estimator. You could quantify the improvement in the estimator through
the mean squared error. The mean squared error for the two estimators are

> mean((mean_est - 18)^2)
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[1] 0.0009165382

> mean((median_est - 18)^2)

[1] 0.0005312188

At this point you cannot say that the median is always better than the mean
because we only did the simulation at one standard deviation and one mean. You
can simulate at more values to get an understanding of what happens at different
parameters. A better approach is to use math. It is possible to show using the
central limit theorem and asymptotic results for the median, that whenever the
data is generated from a double exponential distribution, then median will be a
better estimator of µ. The result is somewhat counter–intuitive because µ is the
population mean, but the sample mean is not the best estimator for it.

(e) We repeat the simulation but draw m from a Gaussian with mean 18 and standard
deviation 0.3.

> N <- 1000

> n <- 100

> m <- matrix(rnorm(n*N,mean=18,sd=0.3),nrow=N)

> mean_est <- apply(m,1,mean)

> median_est <- apply(m,1,median)

> plot(density(mean_est),xlim=c(17.9,18.1),

+ col='red',ylim=c(0,15),

+ xlab="estimate",ylab="Density",main="")

> lines(density(median_est),col="black",lty=2)

> legend("topleft",

+ c("Mean","Median"),

+ col=c("red","black"),

+ lty=1:2)
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We now see that the mean is a better estimator. This is also reflected in the MSE

> mean((mean_est - 18)^2)

[1] 0.0008264765

> mean((median_est - 18)^2)

[1] 0.001302012
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