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MOTIVATION

Prediction with Gaussian processes is not a new idea. It has
roots that date back to Kolmogorov in the 1940s and
applications to multivariate regression as early as the 1960s.

I ARMA models in time series analysis
I “Kriging” in geostatistical models
I Regression splines

Gaussian process regression is a “less” parametric tool for
supervised learning.
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WHAT IS A GAUSSIAN PROCESS?

A stochastic process, Y(x), is a Gaussian process (GP) if it
generates data such that any finite subset of the range of the
process follows a multivariate Gaussian distribution.
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SPECIFICATION

Because the joint distribution of Y(x1),Y(x2), . . . ,Y(xn) is
multivariate Gaussian, we need only specify the mean and the
covariance functions:

I E[Y(x)] = m(x)

I E[{Y(x)−m(x)}{Y(x′)−m(x′)}T] = k(x, x′).

Then, we write Y(x) ∼ GP (m(x), k(x, x′)).



INTRODUCTION GPs GP REGRESSION FARAWAY REFERENCES

REGRESSION MODEL

Suppose that we observe y1, . . . , yn, which are measured
without error (for now).

We believe there is an underlying process f (x) such that

y = f (x).

Our goal is to estimate f (x). To do so, we will assume that
f (x) ∼ GP (0, k(x, x′)).
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SPECIFYING A COVARIANCE FUNCTION

The covariance function, k(x, x′), can be any function that
generates a non-negative definite covariance matrix for any
finite set of points (x1, . . . , xn).

I Seems general, but these functions are tricky to find!
I Usually rely on families that are already well-studied.
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COMMON COVARIANCE FUNCTIONS

I Constant:
k(x, x′) = v0

I Gaussian Noise:
k(x, x′) = v0 δx,x′

I Squared Exponential:

k(x, x′) = v0 exp
[
−‖x− x′‖2

2`2

]
I Many options: Ornstein-Uhlenbeck, Matérn, periodic,

stationary and isotropic covariance functions from spatial
statistics, etc.
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A MORE GENERAL COVARIANCE FUNCTION

Williams and Rasmussen (1996) propose a very general
covariance function that is flexible and works well in practice.

For x = (x1, . . . , xp) and x′ = (x′1, . . . , x
′
p),

k(x, x′) = v0 exp

[
−1

2

p∑
`=1

α`(x` − x′`)
2

]
+ β0 + β1xTx′ + v1 δx,x′ .
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A MORE GENERAL COVARIANCE FUNCTION,
EXPLAINED

k(x, x′) = v0 exp

[
−1

2

p∑
`=1

α`(x` − x′`)
2

]
+ β0 + β1xTx′ + v1 δx,x′ .

I Nearby input values will have highly correlated outputs.
I Very similar to squared exponential, but allows a different

level of smoothing for each input dimension.
I v0 controls the overall scale of local correlations.
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A MORE GENERAL COVARIANCE FUNCTION,
EXPLAINED

k(x, x′) = v0 exp

[
−1

2

p∑
`=1

α`(x` − x′`)
2

]
+ β0 + β1xTx′ + v1 δx,x′ .

I β0 allows for bias, i.e. correlation not explained by inputs.
I β1 allows for a linear contribution to the covariance.
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A MORE GENERAL COVARIANCE FUNCTION,
EXPLAINED

k(x, x′) = v0 exp

[
−1

2

p∑
`=1

α`(x` − x′`)
2

]
+ β0 + β1xTx′ + v1 δx,x′ .

I Accounts for noise or measurement error in the data.
I v1 controls the variance of the noise.
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NOW WHAT?

We have specified our Gaussian process, but how do we use
that to actually perform regression?
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PREDICTION USING GAUSSIAN PROCESSES

For simplicity, suppose we want to predict the value at a single
new point, y∗ = f (x∗).

As always, first some notation:
I Let y = (y1, . . . , yn) be the observed values.

I Let K be the n× n covariance matrix where [K]ij = k(xi, xj).

I Let K∗ be the 1× n vector, K∗ = [k(x∗, x1) . . . k(x∗, xn)].

I Let K∗∗ = k(x∗, x∗) be the scalar variance at the new point.
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PREDICTION USING GAUSSIAN PROCESSES

By the definition of Gaussian process, we know that the
observed values and the desired predicted value have a joint
multivariate normal distribution,[

y
y∗

]
∼ Nn+1

([
0n
0

]
,

[
K KT

∗
K∗ K∗∗

])
.

We know the distribution of y∗|y exactly, so our best guess for
y∗ is simply the mean of this conditional distribution

ŷ∗ = K∗K−1y.
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APPLICATION TO MODELING LIGHTCURVES

The authors’ goal is to develop a new set of measures that can
enhance classification of objects based on lightcurves.

To that end, they want to estimate the “true” lightcurve based
on sparse-ish observations and base their measures on that
estimated function.

Because the authors estimated each lightcurve individually, we
will go through this process for a single curve to demonstrate
how Gaussian process regression works in this setting.
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DATA

Figure: CSS111103:230309+400608, a Flare star
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REGRESSION MODEL

Using time, t, as the indexing variable for our proposed process
and accounting for measurement error we posit that the
process generating the observed magnitudes is of the form

y = f (t) +N (0, σ2
n),

where f (t) ∼ GP (m(t), k(t, t′)) .

It remains to specify the functional forms of m(t) and k(t, t′).
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SPECIFICATION

In this case, it seems that assuming m(t) ≡ 0 is inappropriate.
Following the authors, we set m(t) = 17.99, the median
observed magnitude in the data.

We use the squared exponential covariance kernel for k(t, t′).
Recall that we have additional error in the observations caused
by measurement error.

So, the covariance kernel for the observed magnitudes is

ky(t, t′) = σ2
f exp

[
− 1

2`2 (t− t′)2
]
+ σ2

n δt,t′ .
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PARAMETER SPECIFICATION

As the authors suggest, we set the parameter values as

I σ2
f = 0.27, the median observed variance in the

magnitudes of non-variable objects.

I σ2
n = 0.01, the mean value of measurement error in the

data.

I ` = 140 days.
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FITTED CURVE

Figure: CSS111103:230309+400608, with smoothed curve in red
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THANK YOU!
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