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Photometric Redshift Estimation Background
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Photometric Data

» spectral data is very expensive to collect
» much more photometric data available
» photometry is the spectra observed at small set of wavelengths
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Photometric redshift estimation (photoz) is the process of
estimating redshift from photometric data.

Source: Schafer “A Framework for Statistical Inference in Astrophysics.”
http://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-022513-115538 5/32
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Machine Learning Approach to Photoz

Idea:
» create training set by taking spectroscopy on subset of data
» construct classifier on training data, apply to unlabeled data

Example: Collected photometry in 7 filters for 114 galaxies.
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Spectroscopic Redshift and Photometry
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Only showing 4 of 7 filters.
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Apply Random Forest
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ignored uncertainty in photometry (features)

» training sets are often from nearby objects, unlabeled data far
away objects

» difficult to compute uncertainty in estimate
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Easy Accurate Zphot from Yale (EAZY)

EAZY is a photometric redshift code designed to produce high-quality redshifts over 0<z<4 for
situations where complete spectroscopic calibration samples are not available. Details of the algorithm
and tests of the code on public multi-wavelength photometric datasets are presented by Brammer,
van Dokkum & Coppi (2008)[ADS][PDF].

» developed by Brammer, van Dokkum, Coppi

» synthesizes ideas from several earlier works

Paper: http://adsabs.harvard.edu/abs/2008ApJ. ..686.1503B. Code: https://github.com/gbrammer/eazy-photoz/
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Simple Idea

Notation:
» determine set of model spectra T; for i =1,...,nt

» actual spectra
» spectra generated by theoretical models

» let T,; be spectra i redshifted to z
» let T;,; be spectra i redshifted to z, convolved with filter j

» F; and o; are the flux and flux error in band j

Optimization Function:

J 2
> H H 7}7271. B FJ
Z = argmin min E—
V4

1<i<n g
I Tj:]. J
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Non—Negative Least Squares
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Generalizing the Template Set

Consider expanding templates through linear combinations
nrt
Tz - ZaiTz,i - aTTz
i=1

Astronomical theory says that a; > 0 Vi. So optimization problem

becomes
J 2
Z = argmin min A —

a:a>0 agj
z =1 j

This is known as non—negative least squares in statistics.
Solve on a grid of z.
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More Familiar Statistical Notation

The non-negative least squares estimate is
B = argmin [|Y — X5[3
B:820

where
» X € R"™P is design matrix
» Y € R" is response

without the 8 > 0 constraint the problem has the familiar LS form

argmin ||Y — XB|5 = (X" X)'XTY.
B
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Example Data
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Example Likelihood Surface
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Non—Negative Least Squares Algorithms

» R—package nnls and scipy.optimize.nnls use active set
method (Lawson and Hanson 1974 book “Solving Least Squares
Problems™)

» EAZY uses “Multiplicative Updates for Nonnegative Quadratic
Programming” by Sha 2007 Neural Computation
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Non—Negative Matrix Factorization
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Constructing Template Set

T; are the templates. They may be
» observed data

» advantages: “real” data that does not make physical
assumptions

» disadvantages: sometimes expensive to collect, little data
available at high redshifts

» output from physical simulations
» advantages / disadvantages reversed from observed data

Having a small set of T; is convenient because
» interpretation is easier

» computation is faster
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Constructing Template Set
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T; for i =1,...,259 filters, lots of redundancy, like to reduce set
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Dimension Reduction for Template Construction

'S

X € R"™P are templates

» n = number of templates
» p = number of bins for each tempate

v

p is the “dimension” of the data

v

assume: the row vectors x; are (approximately) in some lower
dimensional subspace of RP

v

finding and characterizing this subspace is called “dimension
reduction”

We would like this subspace to be characterized as a linear
combination of positive bases.
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Dimension Reduction Example

consider
{(xi1, xi2) } iy

the first two dimensions of filters

2

x_i
0000 0002 0004 0006 0008 0010 0.012
I

0.000 0.005 0.010 0.015

Message:
» intrinsic dimension is near 1

» can compress the two dimensional data into 1 dimension 05



Principal Components Analysis (PCA) Idea

» realign axes so
» most variation on first axis
» second most variation on second axis
> L.
» ignore higher axes because minimal variation in these directions
» principal components describe how the new axes map to the old
axis

PCA is typically applied to a scaled version of X.
Xt =(X—-1u")57

» remove column means (u)
» scale column variances to 1
» S is diagonal with Sj; = standard deviation column j of X
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PCA Math — Singular Value Decomposition

The singular value decomposition of X* (assuming n > p) is
X*=UuzVv’

where
» Uisnx pwith UTU= 1!
» data in the new coordinate system.
» Vispxpwith VTV =1
» V rotates the new coordinates to the old coordinates.
» ¥ is p X p diagonal with £;; > ¥ for j < i 2
» > scales the new coordinates to the old coordinates.

1Uisn><pinRandn>< n in theory.

22 is p X pinRand n X pin theory.
23/32



Reconstructing the data

» a g < p dimensional reconstruction of X* (in R notation) is
Xy = U], 1:q]x[1q, 1:q]V[ 1:q]"
» if the data lies (approximately) on a g dimensional subspace then
X"~ X,
» obtain an approximation of the original data
Xg=X:S+1u"

and
X =~ Xq
» reduced template set is V[, 1:q]
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Non—negative Matrix Factorization

Decomposition: When the data matrix X is positive we can
decompose

anp ~ anrerp

where rows of H are basis.

Algorithm: Maximize

n p

LW, H) = > (xjlog(WH); — (WH);)

i=1 j=1

ie maximum likelihood under the model that x; is Poisson((WH);)

Source: Elements of Statistical Learning. Haste, Tibshirani, Friedman. Chapter 14.6. Available:

http://statweb.stanford.edu/~tibs/ElemStatLearn/ 25 /32
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Non-negative Matrix (NMF) Factorization

» the NMF basis vectors often have more physical interpretation
than PCA basis

» eg NMF spectral basis elements look like spectra
» optimizing log likelihood difficult for NMF

» identifiability issues with model*

Source: Donoho and Stodden. “When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?”
https://web.stanford.edu/~vcs/papers/NMFCDP. pdf 26/32
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MNIST Data Set — 12 Fours Out of 4072

§ 4 4 Y

each image 28 x 28 pixels
vectorize image i to x; € R
X € R4072x784

apply PCA and NMF

vV v.v .Yy
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MNIST Results PCA versus NMF

PCA (Mean + 3 principal components)
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EAZY Results
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Random Forest — EAZY Comparison

Random Forest Estimated Redshift

eazy Estimated Redshift

Spectroscopic Redshift

Spectroscopic Redshift
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Random Forest — EAZY Comparison
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Other Challenges / Opportunities / Approaches

>

v

v

v

accounting for template error (model misspecification)
estimating templates from photometric data
propagating uncertainty on redshift to the next stage of analysis

other work on photoz:

» “Robust machine learning applied to astronomical data sets. IlI.
Probabilistic photometric redshifts for galaxies and quasars in
the SDSS and GALEX.” Ball ApJ 2008

» “Bayesian photometric redshift estimation.” Benitez ApJ 2000

» “Random forests for photometric redshifts.” Carliles ApJ 2010

32/32



	Photometric Redshift Estimation Background
	Non–Negative Least Squares
	Non–Negative Matrix Factorization
	EAZY Results

