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Redshift

I fobs (red line) is the observed spectrum
I frf (blue line) is the true, unobserved spectrum
I frf (λ) = fobs(λ(1 + z))
I goal: estimate z
I relatively easy if we observe fobs
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Photometric Data

I spectral data is very expensive to collect
I much more photometric data available
I photometry is the spectra observed at small set of wavelengths

Photometric redshift estimation (photoz) is the process of
estimating redshift from photometric data.
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Source: Schafer “A Framework for Statistical Inference in Astrophysics.”
http://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-022513-115538

http://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-022513-115538


Machine Learning Approach to Photoz

Idea:
I create training set by taking spectroscopy on subset of data
I construct classifier on training data, apply to unlabeled data

Example: Collected photometry in 7 filters for 114 galaxies.
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Spectroscopic Redshift and Photometry
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Apply Random Forest
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I ignored uncertainty in photometry (features)
I training sets are often from nearby objects, unlabeled data far

away objects
I difficult to compute uncertainty in estimate
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Easy Accurate Zphot from Yale (EAZY)

I developed by Brammer, van Dokkum, Coppi

I synthesizes ideas from several earlier works

9 / 32

Paper: http://adsabs.harvard.edu/abs/2008ApJ...686.1503B. Code: https://github.com/gbrammer/eazy-photoz/

http://adsabs.harvard.edu/abs/2008ApJ...686.1503B
https://github.com/gbrammer/eazy-photoz/


Simple Idea

Notation:
I determine set of model spectra Ti for i = 1, . . . , nT

I actual spectra
I spectra generated by theoretical models

I let Tz,i be spectra i redshifted to z

I let Tj ,z,i be spectra i redshifted to z , convolved with filter j

I Fj and σj are the flux and flux error in band j

Optimization Function:

ẑ = argmin
z

min
1≤i≤nT

J∑
j=1

(
Tj ,z,i − Fj

σj

)2
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Outline

Photometric Redshift Estimation Background

Non–Negative Least Squares

Non–Negative Matrix Factorization

EAZY Results
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Generalizing the Template Set

Consider expanding templates through linear combinations

Tz =

nT∑
i=1

αiTz,i = αTTz

Astronomical theory says that αi ≥ 0 ∀i . So optimization problem
becomes

ẑ = argmin
z

min
α:α>0

J∑
j=1

(
αTTz − Fj

σj

)2

This is known as non–negative least squares in statistics.
Solve on a grid of z .

12 / 32



More Familiar Statistical Notation

The non-negative least squares estimate is

β̂ = argmin
β:β≥0

||Y − Xβ||22

where

I X ∈ Rn×p is design matrix

I Y ∈ Rn is response

without the β ≥ 0 constraint the problem has the familiar LS form

argmin
β
||Y − Xβ||22 = (XTX )−1XTY .
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Example Data
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Example Likelihood Surface
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Non–Negative Least Squares Algorithms

I R–package nnls and scipy.optimize.nnls use active set
method (Lawson and Hanson 1974 book “Solving Least Squares
Problems”)

I EAZY uses “Multiplicative Updates for Nonnegative Quadratic
Programming” by Sha 2007 Neural Computation
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Outline

Photometric Redshift Estimation Background

Non–Negative Least Squares

Non–Negative Matrix Factorization
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Constructing Template Set

Ti are the templates. They may be

I observed data
I advantages: “real” data that does not make physical

assumptions
I disadvantages: sometimes expensive to collect, little data

available at high redshifts

I output from physical simulations
I advantages / disadvantages reversed from observed data

Having a small set of Ti is convenient because

I interpretation is easier

I computation is faster
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Constructing Template Set
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Dimension Reduction for Template Construction

I X ∈ Rn×p are templates
I n = number of templates
I p = number of bins for each tempate

I p is the “dimension” of the data

I assume: the row vectors xi are (approximately) in some lower
dimensional subspace of Rp

I finding and characterizing this subspace is called “dimension
reduction”

We would like this subspace to be characterized as a linear
combination of positive bases.
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Dimension Reduction Example

consider
{(xi1, xi2)}ni=1

the first two dimensions of filters
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Message:
I intrinsic dimension is near 1
I can compress the two dimensional data into 1 dimension
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Principal Components Analysis (PCA) Idea

I realign axes so
I most variation on first axis
I second most variation on second axis
I . . .

I ignore higher axes because minimal variation in these directions
I principal components describe how the new axes map to the old

axis

PCA is typically applied to a scaled version of X .

X ∗ = (X − 1µT )S−1

I remove column means (µ)
I scale column variances to 1

I S is diagonal with Sjj = standard deviation column j of X
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PCA Math – Singular Value Decomposition

The singular value decomposition of X ∗ (assuming n > p) is

X ∗ = UΣV T

where

I U is n × p with UTU = I 1

I data in the new coordinate system.

I V is p × p with V TV = I
I V rotates the new coordinates to the old coordinates.

I Σ is p × p diagonal with Σjj > Σii for j < i 2

I Σ scales the new coordinates to the old coordinates.

1
U is n × p in R and n × n in theory.

2
Σ is p × p in R and n × p in theory.
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Reconstructing the data

I a q ≤ p dimensional reconstruction of X ∗ (in R notation) is

X ∗
q = U[, 1:q]Σ[1:q, 1:q]V [, 1:q]T

I if the data lies (approximately) on a q dimensional subspace then

X ∗ ≈ X ∗
q

I obtain an approximation of the original data

Xq = X ∗
q S + 1µT

and
X ≈ Xq

I reduced template set is V [, 1:q]
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Non–negative Matrix Factorization

Decomposition: When the data matrix X is positive we can
decompose

Xn×p ≈ Wn×rHr×p

where rows of H are basis.

Algorithm: Maximize

L(W ,H) =
n∑

i=1

p∑
j=1

(xij log(WH)ij − (WH)ij)

ie maximum likelihood under the model that xij is Poisson((WH)ij)
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Source: Elements of Statistical Learning. Haste, Tibshirani, Friedman. Chapter 14.6. Available:
http://statweb.stanford.edu/~tibs/ElemStatLearn/

http://statweb.stanford.edu/~tibs/ElemStatLearn/


Non–negative Matrix (NMF) Factorization

I the NMF basis vectors often have more physical interpretation
than PCA basis

I eg NMF spectral basis elements look like spectra

I optimizing log likelihood difficult for NMF

I identifiability issues with model∗

26 / 32

Source: Donoho and Stodden. “When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?”
https://web.stanford.edu/~vcs/papers/NMFCDP.pdf

https://web.stanford.edu/~vcs/papers/NMFCDP.pdf


MNIST Data Set – 12 Fours Out of 4072

I each image 28× 28 pixels
I vectorize image i to xi ∈ R784

I X ∈ R4072×784

I apply PCA and NMF
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MNIST Results PCA versus NMF

PCA (Mean + 3 principal components)

NMF (4 Basis Vectors)
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Random Forest – EAZY Comparison
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Random Forest – EAZY Comparison
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Other Challenges / Opportunities / Approaches

I accounting for template error (model misspecification)

I estimating templates from photometric data

I propagating uncertainty on redshift to the next stage of analysis

I other work on photoz:
I “Robust machine learning applied to astronomical data sets. III.

Probabilistic photometric redshifts for galaxies and quasars in
the SDSS and GALEX.” Ball ApJ 2008

I “Bayesian photometric redshift estimation.” Benitez ApJ 2000
I “Random forests for photometric redshifts.” Carliles ApJ 2010
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