
Regression in Astronomy: Errors–In–Variables,

Censoring, Heteroskedasticity, and Intrinsic

Scatter

October 5, 2016

1 / 51



Outline

Introduction

Ordinary Least Squares

Intrinsic Scatter and Heteroskedasticity

Errors–in–Variables: Measurement Error in x

Censoring

An Integrated Bayesian Model

2 / 51



Regression

I y is approximately some function of x

y = f (x) + ε

I regression is used to:
1. estimate, quantify uncertainty in f
2. predict y values for new x

I common to assume linear relation:

f (x) = β0 + β1x

I linear regression is often complicated in astronomy due to:
I heteroskedastic measurement error
I intrinsic scatter
I errors–in–variables (measurement error in x)
I censoring
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Example: Eddington Ratio

I ΓX and log Lbol/Ledd are both measured with error (crosses)

I intrinsic scatter: even if no measurement error in x and y ,
still not a perfect linear relation.
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Source: “Some aspects of measurement error in linear regression of astronomical data” Kelly ApJ 2007
http://iopscience.iop.org/article/10.1086/519947/meta

http://iopscience.iop.org/article/10.1086/519947/meta


Example: Period Luminosity Relation
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I roughly a linear relationship between luminosity and log(period)
I with poorly sampled light curves, errors in period estimates
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Supernovae Cosmology

I non–linear relationship between distance modulus and redshift

I equations from cosmology determine model form

6 / 51

Source: “THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY
CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE” Suzuki 2012
http://iopscience.iop.org/article/10.1088/0004-637X/746/1/85/meta

http://iopscience.iop.org/article/10.1088/0004-637X/746/1/85/meta


Perfect Linear Relationship
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Intrinsic Scatter
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Heteroskedastic Error on x and y
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Censoring
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Ordinary Least Squares Model

I yi = β0 + β1xi + εi where εi ∼ N(0, σ2)

I parameters: (σ2, β0, β1).

I only intrinsic scatter present
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Estimate (σ2, β0, β1) with Maximum Likelihood

σ̂2, β̂0, β̂1 = argmax
(σ2,β0,β1)

L((σ2, β0, β1)|D)

= argmax
(σ2,β0,β1)

n∏
i=1

1√
2πσ2

e−(yi−β0−β1xi )
2/(2σ2)

After some calculus

β̂0 = ȳ − β̂1x̄

β̂1 =
n−1

∑
xiyi − x̄ ȳ

n−1
∑

x2
i − x̄2

σ̂2 =
1

n

∑
(yi − β̂0 − β̂1)2

Can replace 1/n with 1/(n − 2) in σ̂2 formula.
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Use Matrices

Y =


y1

y2
...
yn

 ∈ Rn×1 X =


1 x1

1 x2
...

...
1 xn

 ∈ Rn×2 ε ∼ N(0, σ2I ) ∈ Rn×1

β =

(
β0

β1

)
linear regression is now

Y = Xβ + ε

maximum Likelihood in matrix form

β̂ = (XTX )−1XTY

σ̂2 = n−1(Y − X β̂)T (Y − X β̂)

V̂ar (β̂) = σ̂2(XTX )−1
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Weighted Least Squares

I intrinsic scatter is 0.

I known σyi 6= 0 (yi measured with error)

In statistics this is called heteroskedastic error.

Statistical Model:
Y = Xβ + ε

where
ε ∼ N(0,Σ)

where Σ is a diagonal matrix with Σii = σ2
yi .

(non–matrix form)
yi = β0 + β1xi + εi

where εi ∼ N(0, σ2
yi ) independent across i .
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Example
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Only accounts for measurement error in y , not intrinsic scatter.
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Maximum Likelihood for Heteroskedastic Error

I Trick: ε ∼ N(0,Σ) and

Y = Xβ + ε

is the same as

Σ−1/2Y = Σ−1/2Xβ + Σ−1/2ε

where Σ−1/2ε ∼ N(0, I ).

I Maximum Likelihood from the homoskedastic case tells us

β̂ = (XTΣ−1X )−1XTΣ−1Y

Or write out likelihood, take derivatives, set equal to 0, solve.
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Uncertainty on β̂

Recall from OLS model

Var (β̂) = σ2(XTX )−1.

With heteroskedastic error X → Σ−1/2X and σ → 1, so

Var (β̂) = (XTΣ−1X )−1.
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Intrinsic Scatter + Measurement Error

I OLS covers intrinsic scatter, but no measurement error in y

I WLS covers measurement error in y , but no intrinsic scatter

Intrinsic Scatter and y (Normal) Measurement Error

Y = Xβ + ε

where
ε ∼ N(0,Σ)

where Σ is a diagonal matrix with Σii = σ2 + σ2
yi .

β and σ are unknown parameters.
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General Weighted Least Squares Estimators

I let W be a diagonal weight matrix

I consider estimators of the form

β̂(W ) = (XTWX )−1XTWY .

Possible Weight Matrices:

I W1,ii = 1

I W2,ii = σ−2
yi

I W3,ii = (σ2
yi + σ2)−1

Recall W3 is not known because σ2 is unknown.
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β = (2, 1.5)T , σ = 0.1 with Heteroskedastic Error
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What is sampling distribution using W1,W2, and W3?
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Sampling Distributions

Regenerate data 100 times from model, compute estimators with
each weight matrix.
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I W3 is best, but it depends on σ which is unknown.
I W1 overweights observations with large error (σ2

yi large)
I W2 overweights observations with small error (σ2

yi small)
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Maximum Likelihood with Intrinsic Scatter

σ̂2, β̂0, β̂1 = argmax
(σ2,β0,β1)

L((σ2, β0, β1)|D)

= argmax
(σ2,β0,β1)

n∏
i=1

1√
2π(σ2 + σ2

i )
e−(yi−β0−β1xi )

2/(2(σ2+σ2
i ))

I computation
I no closed form solution
I at fixed σ, closed form solution
I evaluate likelihood at each σ in grid

I uncertainty quantification
I compute standard errors using information matrix
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Outline

Introduction

Ordinary Least Squares

Intrinsic Scatter and Heteroskedasticity

Errors–in–Variables: Measurement Error in x

Censoring

An Integrated Bayesian Model
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Simulation
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Simulation
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Observations

I ignoring error in x produces biased estimators

I worse than ignoring intrinsic scatter / heteroskedasticity in y
I increased variance, not biased

I large sample sizes do not alleviate bias

Essentially if β̂zj is parameter fit with noisy x , then

lim
n→∞

β̂z0 6→ β0

lim
n→∞

β̂z1 6→ β1

In particular
| lim
n→∞

β̂z1| < |β1|
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Simulation with Larger Sample Size
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Simulation with Larger Sample Size
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More Rigorously

xi ∼ N(µx , σ
2
x)

yi = β0 + β1xi + εi

εi ∼ N(0, σ2)

But we do not observe xi , instead

zi = xi + δi

δi ∼ N(0, σ2
δ )

We observe (zi , yi)
n
i=1 iid. We matrix notation

Z =


1 z1

1 z2
...

...
1 zn

 ∈ Rn×2
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More Rigorously

The estimator ignoring the measurement error is

β̂Z = (ZTZ)−1ZTY

But some algebra shows that

E[β̂Z ] =

β0 +
σ2
δ

σ2
δ+σ2

x
µxβ1

σ2
x

σ2
δ+σ2

x
β1


I unbiased only if σ2

δ = 0

I level of bias in slope proportional to

σ2
x

σ2
δ + σ2

x

32 / 51

Normality not necessary, only second moments.



Recall from Time Domain Lecture
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The Double Whammy

Whammy Number 1: Parameter estimates are biased.

Whammy Number 2: Power diminished in hypothesis tests.

H0 :β1 = 0

Ha :β1 6= 0

Result: We draw incorrect conclusions (Whammy 1) and believe
sample sizes need to be larger than actually necessary (Whammy 2).

34 / 51

Source: “Double Whammy” defined in “Measurement error in nonlinear models: a modern perspective” Carroll et al
http://www.stat.tamu.edu/~carroll/eiv.SecondEdition/Table_of_Contents.pdf

http://www.stat.tamu.edu/~carroll/eiv.SecondEdition/Table_of_Contents.pdf


Functional versus Structural Models

Models for addressing measurement error in predictors:

I functional models: do not assume distribution for predictors.
sampling distribution of estimators calculated conditional on
x1, . . . , xn.

I structural models: assume distribution for x . can marginalize
out x in inference.

I will only discuss structural solutions. This means we need to assume
distributions for predictors x .
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Everything Normal Model

Recall (zi , yi)
n
i=1 i.i.d. where

xi ∼ N(µx , σ
2
x)

yi = β0 + β1xi + εi

zi = xi + δi

εi ∼ N(0, σ2)

δi ∼ N(0, σ2
δ )

The marginal distribution of observation (z , y) is(
z
y

)
∼ N

((
µx

β0 + β1µx

)
,

(
σ2
x + σ2

δ β1σ
2
x

β1σ
2
x β2

1σ
2
x + σ2

))
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Identifiability Issue

Param. 1 Param. 2
β0 -2/3 -6/5
β1 2/3 4/5
µx 4 4
σ2
x 3 5/2
σ2 2/3 2/5
σ2
δ 0 1/2
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Problem: (z , y) has same distribution under Parameters 1 and 2.
One Solution: Assume σ2

δ is known. (Fairly realistic in many
astronomy applications.)
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MLE Solution

Compute MLEs for means and covariances of (z , y). Then solve for
parameters of interest:

z̄ = µ̂x

ȳ = β̂0 + β̂1µ̂x

n−1Szz = σ2
δ + σ̂2

x

n−1Syy = σ̂2 + β̂2σ̂2
x

n−1Szy = β̂1σ̂
2
x

38 / 51

See “Statistical Inference” Second Edition by Casella and Berger 12.2.4 for discussion of constructing confidence sets for
parameters.



Notes

I distribution of covariates (x) is important
I without measurement error, inference is done conditional on x
I here used normality assumption for x , very restrictive
I mixture of gaussians would add more flexibility

I identifiability issue shows measurement error in predictors not
necessarily detectable from (z , y) data alone

I if goal is prediction of y using z , ignoring measurement error
may be okay∗

I can we reverse the roles of x and y?
I y may be linear function of x , but x not linear function of y
I reversing roles of x and y results in different lines
I causality / prediction considerations may influence role of x , y

39 / 51

∗ See https://www.stat.tamu.edu/~carroll/talks/Seio_Carroll_04-19-2012.pdf for discussion on classification and
https://www.stat.tamu.edu/~carroll/ftp/2009.papers.directory/prediction_MEM.pdf for nonparametric prediction.

https://www.stat.tamu.edu/~carroll/talks/Seio_Carroll_04-19-2012.pdf
https://www.stat.tamu.edu/~carroll/ftp/2009.papers.directory/prediction_MEM.pdf


OLS Valid Only y on x
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OLS model valid for regression y on x but not for x on y . Red
dotted line does not have clear model interpretation.
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OLS Valid y on x and x on y
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OLS model valid for both y on x and x on y . But estimators (and
parameters themselves) are different.
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See “Linear Regression in Astronomy I” ApJ 1990 Isobe, Feigelson, Akritas, Babu
http://adsabs.harvard.edu/full/1990ApJ...364..104I

http://adsabs.harvard.edu/full/1990ApJ...364..104I
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Censoring in Astronomy

I we do not observe y , but know that y is below or above a
certain value

I sometimes called non–detections

I censoring often due to limiting magnitude in astronomy

I notation:

yi = β0 + β1xi + εi

ci =

{
1 : yi < ti
0 : yi ≥ ti

y ∗i =

{
yi : ci = 0
ti : ci = 1

where we observe (xi , y
∗
i , ci)

43 / 51

Censoring of data is studied extensively in the field of Survival Analysis



Simulation of Censoring
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Good Reference

I next few slides: overview (simplified version) of Kelly
I Bayesian hierarchical model
I accounts for heteroskedastic measurement error in x ,y , intrinsic

scatter, censoring, multivariate regression, truncation
I code available in IDL (astronomy programming language)

I project idea: code model in Stan with an R or Python wrapper

46 / 51



Gaussian Mixture Model for X

I Ψ = (~π, ~µ, ~σ) models distribution of x

f (x |Ψ) =
K∑

k=1

πjN(x |µk , σ
2
k)

I Ψ are nuisance parameters, without much physical meaning
I with K large, very flexible
I Gaussian mixture is computationally advantageous

I zi = xi + δi where δi ∼ N(0, σ2
δi)

I f (zi |Ψ) =
∑
πkN(zi |µk , σ

2
k + σ2

δi)
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Likelihood for (z , y)

I θ = (σ, β0, β1) are regression parameters

I the response is
yi = β0 + β1xi + εi

where εi ∼ N(0, σ2 + σ2
yi) (intrinsic scatter + error)

I the likelihood f ((zi , yi)|θ,Ψ) =

K∑
k=1

πkN

((
µk

β0 + β1µk

)
,

(
σ2
k + σ2

δi β1σ
2
k

β1σ
2
k β2

1σ
2
k + σ2 + σ2

yi

))
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Censoring

I observation i is censored if yi < ti

ci =

{
1 : yi < ti
0 : yi ≥ ti

y ∗i =

{
yi : ci = 0
ti : ci = 1

I the likelihood for data with censoring is

p(zi , y
∗
i , ci) = p(zi , yi |θ,Ψ)1−ci

(∫ ti

−∞
p(zi , y |θ,Ψ)dy

)ci

I special cases
I ti = t for all i , censoring at same level
I ti = −∞ for all i , then ci = 0 ∀i and

p(zi , y
∗
i , ci |θ,Ψ) = p(zi , yi |θ,Ψ)
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Overview of Priors, Computation, Results

I bayesian: priors on (θ,Ψ)

I need proper priors on Ψ to avoid improper posteriors

I gibbs sampler for generating posterior samples

50 / 51

Source: “Some aspects of measurement error in linear regression of astronomical data” Kelly ApJ 2007
http://iopscience.iop.org/article/10.1086/519947/meta

http://iopscience.iop.org/article/10.1086/519947/meta


Related Possible Projects

Density Estimation and Classification with Measurement Error

“Extreme deconvolution . . .”
I density estimation with measurement error
I uses Gaussian mixture model
I emphasis on fast computation

“Think outside . . .”
I uses “Extreme deconvolution . . “ to estimate class densities
I class density used to construct classifier

51 / 51
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