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Regression in Astronomy: Errors—In—Variables,

Censoring, Heteroskedasticity, and Intrinsic
Scatter
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Introduction
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Regression

» y is approximately some function of x
y="Ff(x)+e

» regression is used to:
1. estimate, quantify uncertainty in f
2. predict y values for new x

» common to assume linear relation:

f(x) = Bo + Bix

» linear regression is often complicated in astronomy due to:
» heteroskedastic measurement error
» intrinsic scatter
» errors—in—variables (measurement error in x)
» censoring
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Example: Eddington Ratio

-1
log Ly, / Leaa
» ['x and log Lpo/Ledq are both measured with error (crosses)

» intrinsic scatter: even if no measurement error in x and y,
still not a perfect linear relation.

Source: “Some aspects of measurement error in linear regression of astronomical data” Kelly ApJ 2007
http://iopscience.iop.org/article/10.1086/519947/meta
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http://iopscience.iop.org/article/10.1086/519947/meta

Example: Period Luminosity Relation

Well Sampled Light Curves Poorly Sampled Light Curves
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Period Period
» roughly a linear relationship between luminosity and log(period)
» with poorly sampled light curves, errors in period estimates
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Supernovae Cosmology
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» non-linear relationship between distance modulus and redshift

» equations from cosmology determine model form

Source: “THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY
CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE" Suzuki 2012
http://iopscience.iop.org/article/10.1088/0004-637X/746/1/85/meta 6/51
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Perfect Linear Relationship
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Intrinsic Scatter
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Heteroskedastic Error on x and y

10
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Censoring
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Ordinary Least Squares
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Ordinary Least Squares Model

> y; = fo + Bixi + €; where ¢; ~ N(0,0?)
» parameters: (02, By, 31).

» only intrinsic scatter present
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Estimate (02, 8o, $1) with Maximum Likelihood

52, Bo, By = argmax L((?, Bo, 51)|D)
(02’50’51)

n
1 2 (02
_ —(yi—Bo—P1xi)?/(20%)
= argmax e

(02,80,81) H V2mo?

After some calculus

Po =y — Pix
S T YoXy — Xy
b= n—1y x? — X2

=S (i~ B B

: oy in g2
Can replace 1/n with 1/(n — 2) in &~ formula. 13/51



n 1 x
1 x
Y — y.2 c Rnxl X — . .2 c Rnx2 € ~ N(O, 02/) c Rnxl
Yn 1 x,
_ (bo
5‘(&

linear regression is now
Y =X3+¢
maximum Likelihood in matrix form

B=(X"TX)'XTy
52 =nY(Y = XB)T(Y — XP)
ar (8) =a*(X"X)™
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Intrinsic Scatter and Heteroskedasticity
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Weighted Least Squares

» intrinsic scatter is O.

» known o,; # 0 (y; measured with error)

In statistics this is called heteroskedastic error.

Statistical Model:
Y=XB+¢

where
e~ N(0,X)

where ¥ is a diagonal matrix with >; = 05,.

(non—matrix form)
yi = Bo + Bixj + €

where ¢; ~ N(0, 03,-) independent across i.
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Example

T T T T T T T
1.0 15 20 25 3.0 35 4.0

X

Only accounts for measurement error in y, not intrinsic scatter.
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Maximum Likelihood for Heteroskedastic Error

» Trick: ¢ ~ N(0,X) and

Y=XpB+¢

is the same as

Y2y =y 12X 4 ¥ Y2
where ¥ ~/2¢ ~ N(0, 1.

» Maximum Likelihood from the homoskedastic case tells us

~
B=(XTE X)) XT 1ty
Or write out likelihood, take derivatives, set equal to 0, solve.
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Uncertainty on (3

Recall from OLS model

Var (3) = o?(XTX).

With heteroskedastic error X — ¥ 1/2X and ¢ — 1, so

Var (8) = (X" 1X)™.
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Intrinsic Scatter + Measurement Error

» OLS covers intrinsic scatter, but no measurement error in y

» WLS covers measurement error in y, but no intrinsic scatter
Intrinsic Scatter and y (Normal) Measurement Error
Y=XB+¢

where
e~ N(0,X)

where ¥ is a diagonal matrix with ¥;; = 0® + 07;.

[ and o are unknown parameters.
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General Weighted Least Squares Estimators

» let W be a diagonal weight matrix
» consider estimators of the form

BW) = (XTWxX) ' XTwy.

Possible Weight Matrices:
» Wii=1
> Woi=o0,
> W3,,',' = (0')2,,- + 0'2)71

Recall W; is not known because o

2

2 is unknown.
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X

What is sampling distribution using Wi, W5, and W37
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Sampling Distributions

Regenerate data 100 times from model, compute estimators with
each weight matrix.

» W; is best, but it depends on ¢ which is unknown.

» W overweights observations with large error (o7; large)

» W, overweights observations with small error (05,- small)
23/51



Maximum Likelihood with Intrinsic Scatter

825 BZ)’ 3\1 = argmax L((O-27 507 Bl)|D)
(027ﬁ0761)

n

= argmax L e~ (Vi—Bo—P1x)?/(2(e?+07))

(02,80,81) 11 27‘(‘(0‘2 + 0'12)

» computation

» no closed form solution
» at fixed o, closed form solution
» evaluate likelihood at each o in grid

» uncertainty quantification
» compute standard errors using information matrix
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Errors—in—Variables: Measurement Error in x
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Simulation
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Simulation

© —-| —— OLS Line From Original Data ° ° ©
—— OLS Line With Measurgment Error
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» ignoring error in x produces biased estimators
» worse than ignoring intrinsic scatter / heteroskedasticity in y
» increased variance, not biased

» large sample sizes do not alleviate bias

Essentially if sz is parameter fit with noisy x, then
lim 5.0 7 Bo
n—o0
lim 3.1 /4 B
n—oo

In particular N
| lim B < B
n—oo
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Simulation with Larger Sample Size

29/51



Simulation with Larger Sample Size

—— OLS Line From Original Data .

—— OLS Line WithsMeasurement Error
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More Rigorously

Xi ~ N, 0%)
¥i = Po+ Bixi + €
e ~ N(0,0?)

But we do not observe x;, instead

zi = x; + 0
i ~ N(0,03)
We observe (z;, y;);_, iid. We matrix notation
1
1 =z

Zz=|. " |eRrR™
1 z,
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More Rigorously

The estimator ignoring the measurement error is
B,=(2"2)'Z2"Y
But some algebra shows that

2
~ ﬁO + L,uxﬁl
E[57] = i
GE
» unbiased only if 02 =0
» level of bias in slope proportional to

2

Ox

2 2
o5 + 0%
Normality not necessary, only second moments.
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Recall from Time Domain Lecture

°
S

11

LY b

~
34
3

14

Weisenheit Luminosity
144 143

Weisenheit Luminosity

15
145

16
14.6

Period Period

Here
~ 25
o3 < 0.001

E[Bzﬂ = ﬁﬁl ~ B

g

N XN

XN
+ qu
>N

33/51



The Double Whammy

Whammy Number 1: Parameter estimates are biased.

Whammy Number 2: Power diminished in hypothesis tests.

HO 151 =0
Ha :ﬁl 7£0

Result: We draw incorrect conclusions (Whammy 1) and believe
sample sizes need to be larger than actually necessary (Whammy 2).

Source: “Double Whammy" defined in “Measurement error in nonlinear models: a modern perspective” Carroll et al
http://www.stat.tamu.edu/~carroll/eiv.SecondEdition/Table_of _Contents.pdf
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Functional versus Structural Models

Models for addressing measurement error in predictors:

» functional models: do not assume distribution for predictors.
sampling distribution of estimators calculated conditional on
X1y 43X

» structural models: assume distribution for x. can marginalize
out x in inference.

| will only discuss structural solutions. This means we need to assume
distributions for predictors x.
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Everything Normal Model

Recall (z,y;);_, i.i.d. where

x; ~ N(px, 0%)

yi = Po + Pixi + €
zi = X; + 0;

i ~ N(0,0?)

§; ~ N(0,02)

The marginal distribution of observation (z,y) is
Nl m ) (R s
y Bo+Pun) '\ Broi  Biol+o?
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|dentifiability Issue

Param. 1 | Param. 2 o
Bo| -2/3 -6/5
P 2/3 4/5 N
[hx 4 4 -
02| 3 5/2 e R
APy 2/5 R
2] 0 1/2 AR [ ey

0 2 4 6 8 10

Problem: (z, y) has same distribution under Parameters 1 and 2.
One Solution: Assume 7 is known. (Fairly realistic in many
astronomy applications.)
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MLE Solution

Compute MLEs for means and covariances of (z, y). Then solve for
parameters of interest:

= ﬁx

¥ = Bo + Builix
n'S,, = o3 + 02
n 'S, =5+ 32

-1 D A2
n Szy = Blax

NI

~2
Ox

See “Statistical Inference” Second Edition by Casella and Berger 12.2.4 for discussion of constructing confidence sets for
parameters. 38/51



Notes

>

distribution of covariates (x) is important

» without measurement error, inference is done conditional on x
» here used normality assumption for x, very restrictive
» mixture of gaussians would add more flexibility

» identifiability issue shows measurement error in predictors not
necessarily detectable from (z,y) data alone

» if goal is prediction of y using z, ignoring measurement error
may be okay*

» can we reverse the roles of x and y?

» y may be linear function of x, but x not linear function of y
» reversing roles of x and y results in different lines
» causality / prediction considerations may influence role of x, y

* See https://www.stat.tamu.edu/~carroll/talks/Seio_Carroll_04-19-2012.pdf for discussion on classification and
https://www.stat.tamu.edu/~carroll/ftp/2009.papers.directory/prediction MEM.pdf for nonparametric prediction /51
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OLS Valid Only y on x

8
I

—— Pred: x, Resp: y
[ - = Pred:y, Resp: x
T T

1 2 3 4 5

OLS model valid for regression y on x but not for x on y. Red
dotted line does not have clear model interpretation.
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OLS Valid y on x and x on y

Y e —— Pred: x, Resp: y
’ - - Pred:y, Resp: x

5 6

OLS model valid for both y on x and x on y. But estimators (and
parameters themselves) are different.

See “Linear Regression in Astronomy I” ApJ 1990 Isobe, Feigelson, Akritas, Babu
41/51
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Censoring
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Censoring in Astronomy

» we do not observe y, but know that y is below or above a
certain value

» sometimes called non—detections
» censoring often due to limiting magnitude in astronomy
» notation:

Yi = Bo + Bixi + €
1 yi<t
q:{ yi <t

0 :yiz>t
x yi :¢=20
yi_{t,- =1

where we observe (x;, y’, ¢;)

Censoring of data is studied extensively in the field of Survival Analysis
43/51
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Censoring biases slope estimate towards 0.

Conclusion



An Integrated Bayesian Model
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Good Reference

ThE ASTROPHYSICAL JOURNAL, 665:1489 1506, 2007 August 20
© 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SOME ASPECTS OF MEASUREMENT ERROR IN LINEAR REGRESSION OF ASTRONOMICAL DATA

BranpoN C. KeLLY
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; bkelly@as.arizona.cdu
Received 2006 December 7; accepted 2007 May 8

ABSTRACT

1 describe a Bayesian method to account for errors in linear ssion of as ical data. The method
allows for heteroscedastic and possibly correlated measurement errors and intrinsic scatter in the regression relationship.
The method is based on deriving a likelihood function for the measured data, and I focus on the case when the intrinsic dis-

tribution of the independent variables can be approximated using a mixture of Gaussian functions. I generalize the method
ions, and selection effects (e.g., Malmgquist bias). A Gibbs sam-
ilitv dictribution of the oiven the oheerved data

to i multiple ind dent variables,
nler ic deccrihed for cimnlatine mndom draws fram the

» next few slides: overview (simplified version) of Kelly
» Bayesian hierarchical model
» accounts for heteroskedastic measurement error in x,y, intrinsic
scatter, censoring, multivariate regression, truncation
» code available in IDL (astronomy programming language)

» project idea: code model in Stan with an R or Python wrapper
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Gaussian Mixture Model for X

» U = (7, ji,5) models distribution of x

F(x|W) = > mN (x|, oF)

k=1

» W are nuisance parameters, without much physical meaning
» with K large, very flexible
» Gaussian mixture is computationally advantageous

> z; = x; + 0; where §; ~ N(Oaagi)
> f(Z,|\U) = Zﬂ-kN(Zi“Lkvo-i + 0-(%/)
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Likelihood for (z, y)

» 0 = (0o, By, f1) are regression parameters
» the response is
Yi = Po+ Pixi + €
where €; ~ N(0, 0 + 07;) (intrinsic scatter + error)
» the likelihood f((z;, y;)|0,V) =

K
Z N Kok O-i + O-gi 510’%
— - Bo+ Buuc )\ Puog for+0°+ 0'}2,,-

))
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Censoring

» observation i is censored if y; < t;

C,‘:{l Yy <t

0 ryi=>t
« _Jyi =0
yi_{t,' CC,':].

» the likelihood for data with censoring is

tj

p(zia.yi*7ci) = p(ziuyi‘evw)l_q (/

G
p(zi, y10, W)dy)
» special cases

» t; =t for all i, censoring at same level
» t; = —oo for all i, then ¢; = 0 Vi and
P(Zia)/;*a CI"07 \U) - p(ziv_yi|07 w)
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Overview of Priors, Computation, Results

» bayesian: priors on (6, V)
» need proper priors on W to avoid improper posteriors

» gibbs sampler for generating posterior samples
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Fic. 8.— Distribution of 7 and € (leff) and the measured values of y and x (right), from a simulated censored data setof n = 50 data points, o ~ 7, and 0 ~ o (see§ 7.2).
In the plot of pand &, the filled squares denote the values of € and 7 for the detected data points, and the open squares denote the values of € and 7 for the undetected data points.
The solid lin in both plots is the true regression line. Inthe plot of y-and x, the squares denote the measured values of x and y for the detected data points, and the arrows denote
the wper limits” on  for the undetected data points. The fictitious data point with error bars illustrates the median values of the error bars. The dash-dotted line shows the best-

ine, as calculated from the posterior median of v and /3, and the shaded region defines the approximate 95% (2 o) pointwise confidence intervals on the regress
line. The true values of the regression line arc contained within the 95% confidence intervals.

Source: “Some aspects of measurement error in linear regression of astronomical data” Kelly ApJ 2007
http://iopscience.iop.org/article/10.1086/519947/meta
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Related Possible Projects

Density Estimation and Classification with Measurement Error

EXTREME DECONVOLUTION: INFERRING COMPLETE
DISTRIBUTION FUNCTIONS FROM NOISY, HETEROGENEOUS
AND INCOMPLETE OBSERVATIONS

By Jo Bovy!, DAVID W. HOGG!? AND SAM T. ROWEIS®

New York University

ABSTRACT

We generalize the well-known mixtures of Gaussians approach to density
estimation and the accompanying Expectation-Maximization technique for
fnding the marimum likelthood paramesersof the mixture to the case where

aach data neint rardac an individnal d_dimancinnal nneartainty nvariance

“Extreme deconvolution . . .
» density estimation with measurement error
» uses Gaussian mixture model
» emphasis on fast computation

“Think outside . . .”
» uses “Extreme deconvolution . . " to estimate class densities
» class density used to construct classifier
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