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Introduction

Strong gravitational lensing

Credit: NASA’s Goddard Space Flight Center

The strong gravitational field of a lensing galaxy splits light into two images.

I Light rays take different routes whose lengths can be different.

I Difference between their arrival times → Time delay (∆)
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Introduction

Image Credit: NASA/JPL-Caltech

Time delay is used to infer cosmological parameters, e.g.,

I Hubble constant H0 (Refsdal, 1964)

I Equation of state of dark energy (Linder, 2011)
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Data

Simulated data of a doubly-lensed quasar , an active black hole
(Image Credit: NASA/ESA).

Data are composed of two time series with measurement errors.

I Observation times t ≡ {t1, t2, . . . , tn}>

I Observed magnitudes x ≡ {x1, x2, . . . , xn}>, and y

I Measurement errors (SD) δ ≡ {δ1, δ2, . . . , δn}> and η

Our job is to estimate time delay (shift in the horizontal axis) between
two time series.
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State-space model

I ∃ latent light curves representing the unobserved true magnitudes in
continuous time (red and blue dashed curves).

X(t) = (X (t1),X (t2), . . . ,X (tn))> and Y(t), values on curves at t

I A curve-shifted model (Pelt et al., 1994):

Y(t) = X(t−∆) + β0,

where the time delay ∆ and magnitude offset β0 are unknown.
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Distributions of the observed data

Observed data with independent Gaussian measurement errors

I xj | X (tj)
indep.∼ Normal[X (tj), δ

2
j ]

I yj | Y (tj)
indep.∼ Normal[Y (tj), η

2
j ]

yj | X (tj −∆),∆, β0
indep.∼ Normal[X (tj −∆) + β0, η

2
j ].

I p(x, y | X(t∆),∆, β0)

=
∏n

j=1 p[xj | X (tj)]× p[yj | X (tj −∆),∆, β0],

where t∆ denotes the sorted 2n observation times of t and t−∆.
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Distributions of the latent data

Latent data with Ornstein-Uhlenbeck (O-U)/Damped RW process

I Many astrophysicists have supported the O-U process; Kelly+

(2009), Kozlowski+ (2010), MacLeod+ (2010), Zu+ (2013),

Tewes+(2013), Hojjati+(2014), Bonvin+(2016), and more!

I dX (t) = − 1
τ

(
X (t)− µ

)
dt + σdB(t), where τ is a mean-reversion

time, µ is the overall mean, and σ is the short-term variability.

I O-U process is a Gaussian process with a Matérn(1/2) kernel.

I X(t∆) ∼ Normal2n with some mean vector and covariance matrix

I p(X(t∆) | µ, σ, τ,∆) =

p(X (t∆
1 ) | µ, σ, τ,∆)×

∏2n
j=2 p(X (t∆

j ) | X (t∆
j−1), µ, σ, τ,∆)
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Bayesian: Prior Distributions for Parameters

From statistician’s perspective,

I Prior distributions must guarantee posterior propriety, i.e.∫
p(parameters | data) d(parameters)

=

∫
Lik(parameters)× p(parameters) d(parameters) <∞.

I Without knowing posterior propriety, no one can tell whether the
resulting posterior sample is from the target posterior distribution or
not (Hobert and Casella, 1994).

I When we are not sure about posterior propriety: Use proper priors!

From astrophysicist’s perspective,

I Set up parameters in the proper prior distributions in a way to reflect
on astrophysics and the dynamic of the O-U process.
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Bayesian: Prior Distributions for Parameters
I ∆ ∼ Uniform(u1, u2)

I [u1, u2], if ∃ prior information to restrict the range of ∆, e.g., a
physical model of the lens, redshift, and relative locations.

I [t1 − tn, tn − t1], otherwise.

I Mean of the O-U, µ ∼ Uniform(−30, 30), why 30?
I Magnitude offset, β0 ∼ Uniform(−60, 60), why 60?

Inv-Gamma distribution sets a soft lower bound of a random variable

If X ∼ Inv-Gamma(a, b), p(x) ∝ 1
xa+1 exp(−b/x) with a mode at b

a+1 .

I Variance of the O-U, σ2 ∼ Inv-Gamma(1, c), why 1&c?
I Timescale of the O-U, τ ∼ Inv-Gamma(1, 1), why 1&1?
I Estimates for 9,275 SDSS quasar light curves (MacLeod+, 2010)
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Bayesian: Full Posterior and Sampler

Notation: θOU ≡ (µ, σ2, τ) and Dobs ≡ {x, y}
I Full Posterior: p(X(t∆),∆, β0, θOU | Dobs)

∝ p(x(t), y(t) | X(t∆),∆, β0) Observed data

× p(X(t∆) | ∆, θOU) Latent data

× p(∆, β0, θOU) Priors

I Metropolis-Hastings within Gibbs sampler

1. p(X(t∆),∆ | β0, θOU ,Dobs , )

2. p(β0 | X(t∆),∆, θOU ,Dobs)

3. p(θOU | β0,X(t∆),∆,Dobs)

I Pros: Complete investigation on all the model parameters

I Cons: Inefficient when ∃ multimodality
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Frequentist: Profile likelihood

A profile likelihood function enables us to focus on the parameter of
interest with nuisance parameters maximized out (Berger et al., 1996)

I L(∆, β0, θOU) =∫
R2n p(x, y | X(t∆),∆, β0)× p(X(t∆) | ∆, θOU) dX(t∆)

I Lprof (∆) ≡ maxβ0,θOU
L(∆, β0, θOU) = L(∆, β̂0(∆), θ̂OU(∆))

I Lprof (∆) ∝ p(∆ | Dobs) asymptotically

I Provides approximate posterior mean, mode, standard deviation, and
most importantly shape of the (approximate) distribution

I Pros: Simple to implement and easy to find multi-modes

I Cons: Computationally expensive for drawing a finer curve / no
information about the relationship among parameters
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Our time delay estimation strategy

Bayesian and frequentist methods complement each other!

Our time delay estimation strategy:

1. Obtain the profile likelihood curve to check multimodality

2. Initialize Bayesian method near the modes identified by Lprof(∆)
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Example: Time Delay Challenge
Time Delay Challenge (TDC, Dobler et al., 2015; Liao et al., 2015)

I A blind competition held by 8 astrophysicists from 2013 to 2014.
I Goals: (1) Providing an observation strategy for the LSST.

(2) Improving current estimation methods.
I About 5,000 simulated data sets with some time delays (O-U).
I 13 teams blindly analyzed the simulated data.
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Example: Time Delay Challenge
Simulated data of a doubly-lensed quasar from TDC

(1) The entire profile (log) likelihood curve
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Example: Time Delay Challenge
(2) Posterior distribution of ∆ initialized near the dominant mode

(3) Estimation summary for ∆

Method Truth Post. Mean Post. SD

Bayesian
45.85

46.26 0.41
Profile likelihood 46.26 0.40

(4) Model Checking: Blue light curve is shifted by ∆̂, and β̂0.
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Microlensing

I Microlensing occurs when stars unusually close to the paths of light
introduce independent noise into magnification of brightness light
curves (Tewes et al., 2013).

I Two light curves may have different long-term trends, e.g.,
polynomial.
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Microlensing: Problem

I A curve-shifted model does not work because one of the latent
curves is no longer a shifted version of the other.

I A small overlap between two light curves (bottom plots) is the only
similar fluctuation patterns detectable by shifting one of the light
curves → several modes near margins of the range of ∆.
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Microlensing: Model
Microlensing model

I Popular way is to model the long-term trend of each light curve via
a polynomial regression.

I Our microlensing model accounts for the difference between
long-term trends using an mth-order polynomial regression.

Y (t) = X (t −∆) + w>
m (t − ∆)β,

where wm(t −∆) ≡ (1, t −∆, . . . , (t −∆)m)>, and

β ≡ (β0, β1, . . . , βm)> are regression coefficients.

I Our microlensing model reduces the number of regression
coefficients by half!
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Microlensing Example 1
(1) We set m = 3 as a default (Kochanek+, Morgan+, Tewes+).

(2) Estimation summary (Error ≡ |∆true − ∆̂| and χ ≡ Error/SD)

Method Truth E(∆|Data) SD(∆|Data) Error χ

Bayesian
5.86

6.34 0.28 0.48 1.71
Profile Lik. 6.36 0.28 0.50 1.76

(3) Model Checking: Blue light curve is adjusted by ∆̂ and β̂.
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Microlensing Example 2: Q0957+561
r -band data collected at the US Naval Observatory (Hainline+, 2012).

Researchers
Number of Observation Measurement

∆̂ SE
observations period error (mag)

Pelt et al. (1996) 831 1979–1994 0.0159 423 6

Oscoz et al. (1997) 86 1994–1996 0.01, 0.02 424 3

Serra-Ricart et al. (1999) 197 1996–1998 0.023, 0.025 425 4

Oscoz et al. (2001) 100 1994–1996 0.009, 0.01 423 2

Shalyapin et al. (2012) 371 2005–2010 0.012 420.6 1.9

This work 57 2008–2011 0.004
423.69 2.02
423.21 2.81
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Microlensing Example 3: J1029+2623
Data reported by Fohlmeister et al. (2013).

Researchers Method Estimate 90% Interval

Fohlmeister et al. (2013) χ2-minimization (AIC, BIC) 744 (734, 754)

Kumar, Stalin, and
Difference-smoothing 743.5 (734.6, 752.4)

Prabhu (2014)

This work
Bayesian 735.28 (733.08, 737.59)

Profile likelihood 733.11 (732.94, 738.44)

Our point estimate is much smaller than theirs (by about 10 days) & our
90% intervals are much shorter than theirs. What’s wrong here? Is it
because our model is over-confident?
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Microlensing Example 3: J1029+2623 (cont.)

Fohlmeister et al. (2013)

I A point estimator based on high-dimensional optimization

I Linear microlensing model (AIC) + a model w/o microlensing (BIC)

Kumar et al. (2014)

I A point estimator also based on high-dimensional optimization

I A spline with a Gaussian kernel to account for microlensing

It reveals that our model accounts for microlensing better than theirs.
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Discussion: Time Delay Challenge II
Doubly-lensed multi-filter light curves (Marshall et al., 2016+)

I Six bands, u, g , r , i , z , y , lead to vector time series.

I 5,000+ systems, 6 bands for each system, 150 obs. for each band.

I Bluer filters are more sensitive to microlensing than redder filters.

I All the information (except ∆) needed to calculate H0 will be given.

I Evaluation is based on two numbers, H0 estimate and its uncertainty.

I http://timedelaychallenge.org for more information!
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