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Tentative Schedule

Date Topic
Sept 7 Introduction, Time Domain Astronomy (James Long)
Sept 14 Time Domain Astronomy (James Long)
Sept 21 Time Domain Astronomy (James Long)
Sept 28 Bootstrap, Hypothesis Testing (Jogesh Babu)
Oct 5 Bootstrap, Hypothesis Testing (Jogesh Babu)
Oct 12 Spectral Data, Bayesian SED Fitting (Viviana Acquaviva)
Oct 19 Something Bayesian (Tom Loredo)
Oct 26 Approximate Bayesian Computation (Jessi Cisewski)
Nov 2 Spectral Data, Approximate Models (James Long)
Nov 9 Spectral Data, Approximate Models (James Long)
Nov 16 Student Presentations
Nov 23 NO CLASS
Nov 30 Student Presentations
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Where to Find Course Information

I course website: http://stat.tamu.edu/~jlong/astrostat

I email me: jlong + at + stat.tamu.edu

I office hours: after class or by appointment

I course lectures: videos on samsi website
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Grading / Work Load

I P/F for everyone

I sign up sheet in back of classroom

I no homework

I suggested readings on course website

I target audience: 1st year statistics PhD student

I course project
I choose topic by mid October, submit 1 paragraph description
I meet with me in early November to discuss progress
I ≈ 30 min in class presentations on Nov 16,30
I more details at later lectures
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Project Topic Suggestions

I reproduce article results / apply to new data set
I “Unsupervised Transient Light Curve Analysis Via Hierarchical

Bayesian Inference” by Sanders, ApJ
I “Modeling lightcurves for improved classification . . .” by

Faraway, Statistical Analysis and Data Mining
I “Some Aspects of Measurement Error . . . ” Kelly ApJ
I “A flexible method of estimating luminosity functions” Kelly

ApJ
I tutorial on research / coding tools

I bayesian computing, eg stan
I ipython / jupyter notebooks

I simulation study, algorithm comparison
I overview of topic in astronomy we did not cover**

I photometric redshift estimation
I source extraction from images
I statistics of gravity waves
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Astrostatistics Textbooks
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Common Themes

I complex, multi–stage inference problems
I “A framework for statistical inference in astrophysics” [4]

I measurement error, heteroskedastic errors with known variance

I large data sets

I data types: images, spectra, maps

I complex scientific questions that require close
astronomer–statistician collaboration
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Statistical Methods Used: Pretty Much Everything

I machine learning

I measurement error models

I samplers, MCMC

I functional data analysis

I time series

I hierarchical models

I spatial statistics
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Getting Involved in Astrostat Research @ SAMSI

WG 1: Uncertainty Quantification and Astrophysical Emulation
Leaders: Derek Bingham (SFU) and Earl Lawrence (LANL)
To join email: wg1@sakai.duke.edu

WG 2: Synoptic Time Domain Surveys
Leaders: Ashish Mahabal (Caltech) and G. Jogesh Babu (PSU)
To join email: wg2@sakai.duke.edu
Weekly meeting time: Tuesdays at 12:00-1:00PM, EDT

WG 3: Multivariate and Irregularly Sampled Time Series (MISTS)
Leaders: Ben Farr (U.Chicago) and Soumen Lahiri (NCSU)
To join email: wg3@sakai.duke.edu

WG 4: Astrophysical Populations (AP)
Leaders: Jessi Cisewski (Yale) and Eric Ford (PSU)
To join email: wg4@sakai.duke.edu
Weekly meeting time: Thursdays at 12:00-1:00PM, EDT

WG 5: Statistics, Computation, and Modeling in Cosmology (COSMO)
WG Leaders: Jeff Jewell (JPL) and Joe Guinness (NCSU)
To join email: wg5@sakai.duke.edu
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Telescopes Take Images of the Night Sky
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Images to Catalogs

For every object in every image,
need to identify and characterize
objects:

I location (RA/Dec)

I brightness (magnitudes)

I filter (or band)

I time (MJD)

Hard task (possible project):

I “SExtractor: Software for source extraction” Aanda, Bertin [1]

I “The SDSS Imaging Pipeline” Lupton [2]

I “Celeste: Variational inference for a generative model of
astronomical images” ICML, Regier [3]
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Time Domain: Objects are Observed Over Time

When telescope takes repeated images of the same area of the sky,
we obtain many brightness measurements for each object.
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Surveys

Surveys:
I Non–survey: Hey, there’s something interesting over there, let’s

point our telescope at it.
I Survey: Observations are scheduled in advance with some

science goals in mind.

Tradeoffs in Surveys:
I narrow vs wide
I shallow vs deep
I number of filters
I temporal coverage

Given a certain budget of telescope time, these are optimized for one
(or several) science goals.

Tom Loredo’s Talk on Surveys:

https://www.samsi.info/wp-content/uploads/2016/08/Tutorial-CosmicDemographics_Loredo.pdf
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Major Time Domain Optical Surveys

I Sloan Digital Sky Survey – Stripe 82 (SDSS)

I Optical Gravitational Lensing Experiment (OGLE)

I Kepler

I Dark Energy Survey (DES)

I Large Synoptic Survey Telescope (LSST)
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SDSS – Stripe 82

See Sesar [6] and Sesar [5]
Image credit: https://inspirehep.net/record/859503/files/F3.png 20 / 36
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SDSS Photometry

I standard star catalog (≈ 1 million):
http://www.astro.washington.edu/users/ivezic/sdss/

catalogs/stripe82.html

I variable source catalog (≈ 67,000):
http://www.astro.washington.edu/users/ivezic/sdss/

catalogs/S82variables.html
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SDSS Variable Light Curve
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I ≈ 67,000 of these in SDSS Stripe 82
I ≈ 70 observations / filter in 5 (u,g,r,i,z) filters
I ≈ 10 years
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Folded Light Curve

Estimate period of 0.64 days, plot magnitude versus phase for object.

0.0 0.2 0.4 0.6 0.8 1.0

18
.5

18
.0

17
.5

17
.0

Phase (period = 0.64)

M
ag

ni
tu

de

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● g Band
i Band
r Band
u Band
z Band

RR Lyrae variable star, useful for determining distance.
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Selecting Variable Sources

I Data for single star is

D = {(tjb,mjb, σjb)}nbj=1

for b = 1, . . . ,B . Observe brightness mjb at time tjb with
uncertainty σjb in filter (band) b.

I If a star is constant then a possible model is

mjb = µb + εjb

where εjb ∼ N(0, σ2
jb).

I µ̂b = (
∑
σ−2
jb )−1

∑nb
j=1

mjb

σ2
jb

RSS(b) =

nb∑
i=1

(
mjb − µ̂b

σjb

)2

I Large RSS(b) suggest variable.
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Using RSS to Make Cuts

For example Sesar 2007 [6] defines

χ2(g) =
1

ng − 1
RSS(g)

A source must have χ2(g) above 3 to be labeled variable.
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Optical Gravitational Lensing Experiment (OGLE)

Surveyed Small Magellanic Cloud, Large Magellanic Cloud, and
Galactic Bulge.
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OGLE Photometry

I OGLE–III catalog of variables
http://ogledb.astrouw.edu.pl/~ogle/CVS/

I ≈ 400,000 variable stars
I 2 filters (I,V)
I more data in I
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Kepler

Goal: Find transiting extrasolar planets.

I observation every 30 minutes

I one filter

I ≈ 145, 000 main sequence stars

Transiting Method for Detecting Exoplanets:
http://kepler.nasa.gov/multimedia/Interactives/HowKeplerDiscoversPlanetsElementary/flash.cfm

Credit for Images: https://en.wikipedia.org/wiki/Kepler_(spacecraft)
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Kepler Photometry

Planet transits every ≈ 3.5 days.
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Dark Energy Survey

Goal: Investigate Large Scale Structure of Universe using

I Type Ia supernovae

I Baryon Acoustic Oscillations (BAO)

I Number of galaxy clusters

I Weak gravitational lensing

What is a good observing strategy for supernovae?
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Dark Energy Survey Sky Coverage

Taken from: https://www.darkenergysurvey.org/the-des-project/survey-and-operations/

31 / 36

https://www.darkenergysurvey.org/the-des-project/survey-and-operations/


Dark Energy Survey – Supernovae Fields Y1

Many observations / object but fewer objects.
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Dark Energy Survey – Wide Fields Y1

Few observations / object but many objects (≈ 100 million stars).
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Large Synoptic Survey Telescope

I first light in 2019

I wide range of science goals

I unprecedented quantity of data
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Summary

I large (and growing) amount of data

I different survey strategies to target different science goals

I data types: two modes of thinking
I (vector valued) irregularly sampled time series
I (vector valued) irregularly sampled functional data

I heteroskedastic magnitude error, “known” variance
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