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Survey Data Sets are Large and Growing

I Hipparcos (1989–1993): 2712 periodic variables
I Laurent Eyer and students classified all by eye.

I OGLE (1992–present): 100,000s

I Gaia (present): millions

I LSST (2020): billions

4 / 55



Light Curves Belong to Different Classes

Class: Mira
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I pulsating red giant in late stage of stellar evolution

I mean magnitude variation due to dust

I long period, high amplitude
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Light Curves Belong to Different Classes

Class: RR Lyrae
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Hierarchical Structure to Classes
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Classification Example

Data:
I ≈ 100, 000 variable sources in M33
I ≈ 30 observations / source in I–band
I mix of Miras (O–rich/C–rich), SRVs, Cepheids, non–periodic

sources, junk, etc.
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I Determine period–luminosity relationships for the Miras.
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Overview of Statistical Classification

Key Terms:

I training data: lightcurves of known class

I unlabeled data: lightcurves of unknown class

Steps in Classification:

1. feature extraction: derive quantities from light curves useful
for separating classes, eg period, amplitude, derivatives, etc.

2. classifier construction: using training data, construct function

Ĉ(features)→ class

3. apply classifier: for unlabeled data, compute features and
predict class using Ĉ
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Classifier Construction using CART
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Building CART Tree . . .
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Building CART Tree . . .
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Building CART Tree . . .
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Resulting Classifier
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Apply Classifier to Test Data

Test Data: Data used to evaluate classifier accuracy. Test data is
not used to construct classifier.

Confusion Matrix: Rows are true class of test data. Columns are
predicted class of test data. Entries are counts.

Predicted
Truth black blue orange
black 23 1 7
blue 2 30 2
orange 3 1 31
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Outline

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities
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OGLE Classification Example

Classes

I Mira O–rich

I Mira C–rich

I Cepheid

I RR Lyrae AB

I RR Lyrae C

Features

I period (of best fitting sinusoid)

I amplitude = 95th percentile mag - 5th percentile mag

I skew of magnitude measurements

I p2p scatter (used by Dubath)
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First 6 Rows of Feature–Class Dataframe

500 total rows. 5 classes.

training data: 400 randomly selected rows
test data: remaining 100 rows
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Feature Distributions

log(period)
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CART Model Fit To Training Data

period >= 0.42

period >= 0.89

amp < 0.75

p2p_scatter < 0.061

period >= 1

cepheid
72 / 72

mira−crich
63 / 85

mira−orich
6 / 7

mira−orich
55 / 66

rrab
85 / 85

rrc
85 / 85

yes no

20 / 55



Confusion Matrix using Test Data

Predicted
Truth cepheid mira-crich mira-orich rrab rrc
cepheid 24 0 0 0 0
mira-crich 0 15 10 0 0
mira-orich 0 5 12 0 0
rrab 1 0 0 14 0
rrc 0 0 0 1 14

Conclusion: Develop features to better separate O/C–rich Mira.
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Notes on Existing Classification Literature

I “On machine learning classification of variable stars”
Richards J. et al. 2011 [7]

I mix of OGLE and Hipparcos data
I extract 50+ features
I test several classifiers, Random Forest works best

I “Random forest automated supervised classification of
Hipparcos periodic variable stars” Dubath et al. 2011 [2]

I Hipparcos data
I extract ∼ 10 features
I use random Forest

I “Modeling Light Curves for Improved Classification”
Faraway, J. Mahabal, A. et al. 2014 [3]

I model light curve variation using Gaussian processes
I extract features from Gaussian process fit
I improve classification accuracy over simpler features used in [7]
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Outline

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities
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What Training Data To Use?

Unlabeled Data: Light curves with 20 photometric measurements.

Two Options for Training Data

1. High SN: Many photometric measurements / light curve

I Pros: Accurately estimate features (eg period estimates correct)

I Cons: Training “looks different” than unlabeled data.

2. Training resembles Unlabeled: 20 photometric measurements

I Pros: Training “looks the same” as unlabeled.

I Cons: Features estimated incorrectly.
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Training Data Should Resemble Unlabeled Data

Hypothetical Example:

I Unlabeled Data: RR Lyrae and Miras with 20 photometric
measurements

I Features: period and amplitude.

I Training 1: Light curves with > 100 photometric measurements

I Training 2: Light curves with 20 photometric measurements
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Classifier built on Training 1 Data

Feature Distribution
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CART Tree

period >= 51

mira
100 / 100

rr
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yes no

Conclusion: Seemingly Perfect Classification
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Apply Classifier to Unlabeled Data

Feature Distribution
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Observations

I classifier constructed using Training Data 1 used period to
separate classes

I for poorly sampled unlabeled data, period does not separate
classes (cannot compute period accurately)

I but amplitude is still useful for separating classes

29 / 55



Classifier built on Training 2 Data

Feature Distribution
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Apply Train 2 Classifier to Unlabeled Data

Feature Distribution
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rr 29 71

Conclusion: Much better performance.
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Summary of Training Data Selection

I classifiers constructed on high SN data find class boundaries in
high SN feature space

I these boundaries may not exist for low SN unlabeled data.

I downsampling high SN data to match unlabeled data SN can
improve classifier performance

I example of domain adaptation / transfer learning
I Long et al. [4] for extensive discussion, methodology
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Outline

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities
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Recall Classification Example

Data:

I ≈ 100, 000 variable sources (large J–stetson) in M33

I ≈ 30 observations / source in I–band

I mix of Miras (O–rich/C–rich), SRVs, Cepheids, non–periodic
sources, junk, etc.

Goals:

I find O–rich and C–rich Miras

I determine period–luminosity relationships for the Miras
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Building Classifier for M33 is Difficult

OGLE Training Data

I downsample to match M33 cadence / photometric error

I select OGLE classes which match classes in M33

Evaluating Classifier Performance

I straightforward to measure error rate on training data

I how do we measure error rate on test?

I classification is only an intermediate step towards larger
astronomy goals (specifically modeling of the light curve
populations)
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A Different Approach: Clustering

clustering: find groups (ie clusters) of objects in feature space

I compute feature distance between all objects

I find clusters where:
I distance between objects within cluster is small
I distance between objects in different clusters is large

clustering is different than classification: No training data. No
objective measure of success.
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OGLE Data
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Hierarchical Agglomerative Clustering Idea

Main Idea:

I every observation starts as own cluster

I iteratively merge “close” clusters together

I iterate until one giant cluster left

Method is

I Hierarchical: Each iteration produces a clustering, so do not
specify number of clusters in advance.

I Agglomerative: Initially every observation in own cluster.

38 / 55



Hierarchical Agglomerative Clustering Pseudocode

I N ← {1, . . . , n}
I dij ← d(xi , xj) ∀ i , j ∈ N

I Cin ← {xi} ∀i ∈ N

I for k = n, . . . , 2:
I i , j ← argmin

{i ,j :i<j , i ,j∈N}
dC (Cik ,Cjk)

I Ci(k−1) ← Cik ∪ Cjk

I Cl(k−1) ← Clk ∀l 6= i , j and l ∈ N
I N ← N\{j}

The C·k are the k clusters in the k th level of the hierarchy.
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How to Merge Clusters (What is dC?)

I Average Linkage

dC (Ci ,Cj) =
1

#(Ci)#(Cj)

∑
x∈Ci

∑
x ′∈Cj

d(x , x ′)

I Complete Linkage

dC (Ci ,Cj) = max
x∈Ci ,x ′∈Cj

d(x , x ′)

I Single Linkage

dC (Ci ,Cj) = min
x∈Ci ,x ′∈Cj

d(x , x ′)
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Constructing a Dendrogram

I At iteration k

i , j ← argmin
{i ,j :i<j ,i ,j∈N}

dC (Cik ,Cjk).

I The “height” of this cluster merger is

hk = dC (Cik ,Cjk)

I The sequence hn, . . . , h2 is monotonically increasing.

I Plot with heights of cluster mergers is a dendrogram.
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Clustering Dendrogram of OGLE Data
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Two Clusters
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Two Clusters
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Three Clusters
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Four Clusters
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Outlier Identification

I “Supervised detection of anomalous light curves in
massive astronomical catalogs” Nun, Pichara,
Protopapas, Kim ApJ 2014 [6]

I Model voting distribution of random forest using Bayesian
network. Outliers have unusual voting patterns.

I “Discovery of Bright Galactic R Coronae Borealis and DY
Persei Variables: Rare Gems Mined from ACVS” Miller,
Richards, Bloom, et al. [5]

I Find rare R Cor Bor stars using random forest classifier, human
analysis of light curves, and spectroscopic follow–up
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More on Clustering and Outlier Detection

I many “knobs” in clustering methods
I features
I distance metric between features
I hierarchical clustering, k–means, model based, etc.

I hard to statistically quantify successful clustering
I may explain popularity of classification

I opinion: variable star “classification” is between the statistical
concepts of clustering, classification, and outlier detection
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Outline

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities
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Conclusions

I statistical classification

1. select training data
2. extract features
3. build classifier
4. apply classifier to unlabeled data

I training data should “look like” unlabeled data

I classification as practiced in statistics does not always fit
perfectly with what astronomers want to do
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Opportunities for Learning More / Project Ideas

I join Working Group 2 (WG2)

I compete in WG2 classification challenge (starting October?)

I machine learning tutorial on SDSS:
https://github.com/juramaga/clustering/blob/master/

machine-learning-on-SDSS.ipynb

I “Modeling Light Curves for Improved Classification” Faraway, J.
Mahabal, A. et al. 2014 [3]
Data available: http://people.bath.ac.uk/jjf23/modlc/

I outlier hunting in data set, eg OGLE
http://ogledb.astrouw.edu.pl/~ogle/CVS/
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Upcoming Topics in Time Domain

I astronomical motivation for time domain / variable sources
I distance determination
I period–luminosity relation
I expansion of the universe

I feature extraction / modeling light curves

I example problem: mapping the Milky Way halo with RR Lyrae
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