

Automated Variable Source Classification: Methods and Challenges

James Long

Texas A&M Department of Statistics

September 14, 2016

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

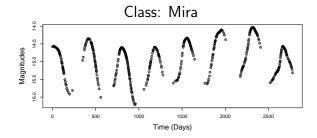
Challenge 2: Classification versus Clustering

Conclusions and Opportunities

Survey Data Sets are Large and Growing

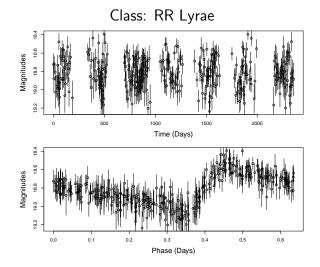
- ► Hipparcos (1989–1993): 2712 periodic variables
 - Laurent Eyer and students classified all by eye.
- ► OGLE (1992-present): 100,000s
- ► Gaia (present): millions
- LSST (2020): billions

Light Curves Belong to Different Classes



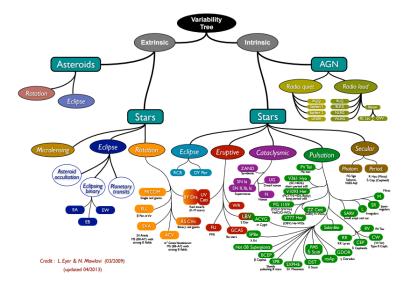
- pulsating red giant in late stage of stellar evolution
- mean magnitude variation due to dust
- long period, high amplitude

Light Curves Belong to Different Classes



- pulsating horizontal branch stars
- (almost) strictly periodic, short period, low amplitude

Hierarchical Structure to Classes

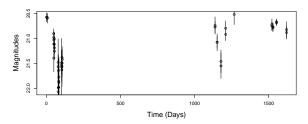


Classification Example

Data:

- $\blacktriangleright~\approx$ 100,000 variable sources in M33
- \blacktriangleright \approx 30 observations / source in I–band

 mix of Miras (O-rich/C-rich), SRVs, Cepheids, non-periodic sources, junk, etc.



Goals:

- ► Find O-rich and C-rich Miras.
- Determine period–luminosity relationships for the Miras.

Overview of Statistical Classification

Key Terms:

- training data: lightcurves of known class
- unlabeled data: lightcurves of unknown class

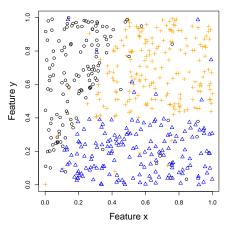
Steps in Classification:

- 1. **feature extraction:** derive quantities from light curves useful for separating classes, eg period, amplitude, derivatives, etc.
- 2. classifier construction: using training data, construct function

 $\widehat{\mathcal{C}}(\mathit{features})
ightarrow \mathit{class}$

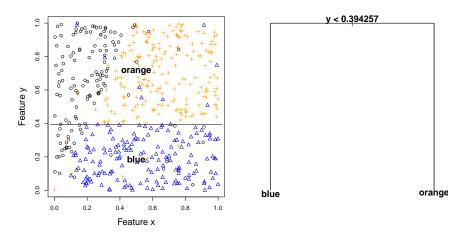
3. apply classifier: for unlabeled data, compute features and predict class using $\widehat{\mathcal{C}}$

Classifier Construction using CART

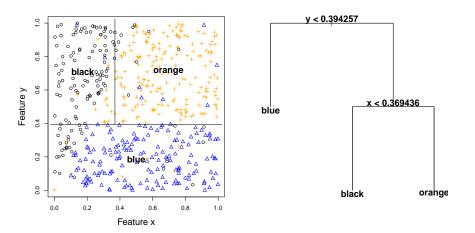


- CART developed by Breiman et al in 1980's [1]
- recursively partitions feature space
- partition represented by tree

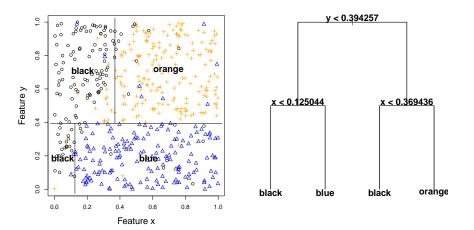
Building CART Tree . . .



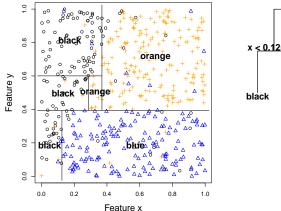
Building CART Tree . . .

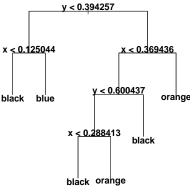


Building CART Tree . . .



Resulting Classifier





Test Data: Data used to evaluate classifier accuracy. Test data is not used to construct classifier.

Confusion Matrix: Rows are true class of test data. Columns are predicted class of test data. Entries are counts.

	Predicted		
Truth	black	blue	orange
black	23	1	7
blue	2	30	2
orange	3	1	31

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities

OGLE Classification Example

Classes

- Mira O–rich
- Mira C–rich
- Cepheid
- RR Lyrae AB
- RR Lyrae C

Features

- period (of best fitting sinusoid)
- amplitude = 95^{th} percentile mag 5^{th} percentile mag
- skew of magnitude measurements
- p2p_scatter (used by Dubath)

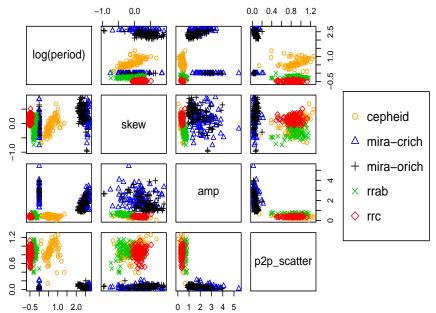
First 6 Rows of Feature–Class Dataframe

period	skew	amp	p2p_scatter	class
1.6128497	-0.5009063	0.56050	0.8672024	cepheid
0.6394983	0.3022388	0.35675	0.7523166	rrab
0.6433533	0.3200730	0.33730	0.8554517	rrab
0.4954661	-0.2053132	0.42000	0.7560226	rrab
0.3540801	0.1361693	0.34340	0.9215426	rrc
0.5460332	-0.3863142	0.69600	1.0682803	rrab

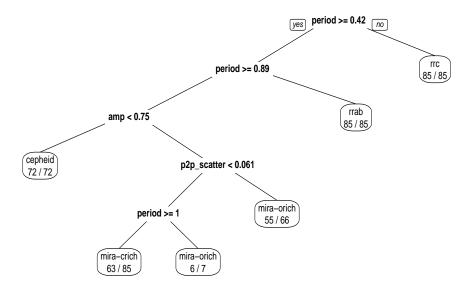
500 total rows. 5 classes.

training data: 400 randomly selected rows test data: remaining 100 rows

Feature Distributions



CART Model Fit To Training Data



Confusion Matrix using Test Data

	Predicted				
Truth	cepheid	mira-crich	mira-orich	rrab	rrc
cepheid	24	0	0	0	0
mira-crich	0	15	10	0	0
mira-orich	0	5	12	0	0
rrab	1	0	0	14	0
rrc	0	0	0	1	14

Conclusion: Develop features to better separate O/C-rich Mira.

Notes on Existing Classification Literature

- "On machine learning classification of variable stars" Richards J. et al. 2011 [7]
 - mix of OGLE and Hipparcos data
 - extract 50+ features
 - ► test several classifiers, Random Forest works best
- "Random forest automated supervised classification of Hipparcos periodic variable stars" Dubath et al. 2011 [2]
 - Hipparcos data
 - extract $\sim 10~\text{features}$
 - use random Forest

"Modeling Light Curves for Improved Classification" Faraway, J. Mahabal, A. et al. 2014 [3]

- model light curve variation using Gaussian processes
- extract features from Gaussian process fit
- ▶ improve classification accuracy over simpler features used in [7]

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities

What Training Data To Use?

Unlabeled Data: Light curves with 20 photometric measurements.

Two Options for Training Data

1. High SN: Many photometric measurements / light curve

- Pros: Accurately estimate features (eg period estimates correct)
- ► Cons: Training "looks different" than unlabeled data.

2. Training resembles Unlabeled: 20 photometric measurements

- ▶ Pros: Training "looks the same" as unlabeled.
- Cons: Features estimated incorrectly.

What Training Data To Use?

Unlabeled Data: Light curves with 20 photometric measurements.

Two Options for Training Data

1. High SN: Many photometric measurements / light curve

Pros: Accurately estimate features (eg period estimates correct)
 Cons: Training "looks different" than unlabeled data.

2. Training resembles Unlabeled: 20 photometric measurements

- ▶ Pros: Training "looks the same" as unlabeled.
- Cons: Features estimated incorrectly.

Training Data Should Resemble Unlabeled Data

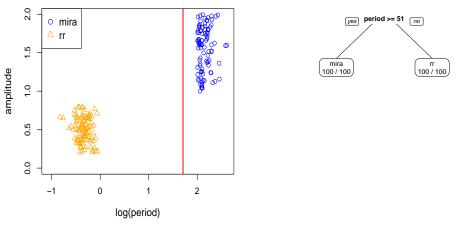
Hypothetical Example:

- Unlabeled Data: RR Lyrae and Miras with 20 photometric measurements
- Features: period and amplitude.
- ► Training 1: Light curves with > 100 photometric measurements
- ► Training 2: Light curves with 20 photometric measurements

Classifier built on Training 1 Data

Feature Distribution

CART Tree

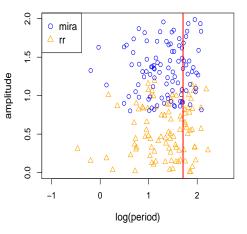


Conclusion: Seemingly Perfect Classification

Apply Classifier to Unlabeled Data

Feature Distribution

Confusion Matrix



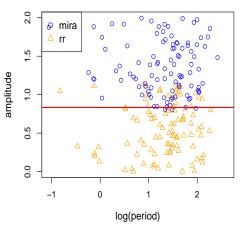
	Predicted	
Truth	mira	rr
mira	22	78
rr	28	72

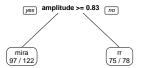
- classifier constructed using Training Data 1 used period to separate classes
- for poorly sampled unlabeled data, period does not separate classes (cannot compute period accurately)
- but amplitude is still useful for separating classes

Classifier built on Training 2 Data

Feature Distribution

CART Tree

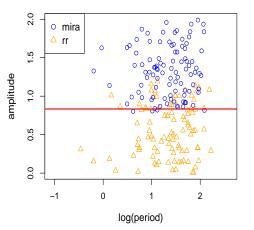




Apply Train 2 Classifier to Unlabeled Data

Feature Distribution

Confusion Matrix



	Predicted		
Truth	mira	rr	
mira	96	4	
rr	29	71	

Conclusion: Much better performance.

31 / 55

Summary of Training Data Selection

- classifiers constructed on high SN data find class boundaries in high SN feature space
- ▶ these boundaries may not exist for low SN unlabeled data.
- downsampling high SN data to match unlabeled data SN can improve classifier performance
 - example of domain adaptation / transfer learning
 - ▶ Long et al. [4] for extensive discussion, methodology

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities

Data:

- $ightarrow \approx 100,000$ variable sources (large J–stetson) in M33
- \blacktriangleright \approx 30 observations / source in I–band
- mix of Miras (O-rich/C-rich), SRVs, Cepheids, non-periodic sources, junk, etc.

Goals:

- ▶ find O-rich and C-rich Miras
- determine period–luminosity relationships for the Miras

Building Classifier for M33 is Difficult

OGLE Training Data

- downsample to match M33 cadence / photometric error
- ▶ select OGLE classes which match classes in M33

Evaluating Classifier Performance

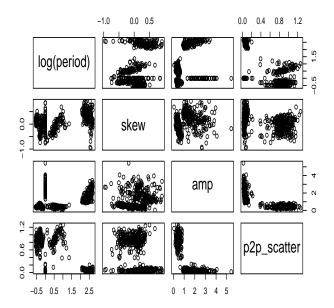
- straightforward to measure error rate on training data
- how do we measure error rate on test?
- classification is only an intermediate step towards larger astronomy goals (specifically modeling of the light curve populations)

clustering: find groups (ie clusters) of objects in feature space

- compute feature distance between all objects
- find clusters where:
 - distance between objects within cluster is small
 - distance between objects in different clusters is large

clustering is different than classification: No training data. No objective measure of success.

OGLE Data



Hierarchical Agglomerative Clustering Idea

Main Idea:

- every observation starts as own cluster
- ► iteratively merge "close" clusters together
- iterate until one giant cluster left

Method is

- Hierarchical: Each iteration produces a clustering, so do not specify number of clusters in advance.
- ► Agglomerative: Initially every observation in own cluster.

Hierarchical Agglomerative Clustering Pseudocode

$$N \leftarrow \{1, \dots, n\}$$

$$d_{ij} \leftarrow d(x_i, x_j) \forall i, j \in N$$

$$C_{in} \leftarrow \{x_i\} \forall i \in N$$

$$for \ k = n, \dots, 2:$$

$$i, j \leftarrow \underset{\{i,j:i < j, i, j \in N\}}{\operatorname{argmin}} d_C(C_{ik}, C_{jk})$$

$$C_{i(k-1)} \leftarrow C_{ik} \cup C_{jk}$$

$$C_{l(k-1)} \leftarrow C_{lk} \forall l \neq i, j \text{ and } l \in N$$

$$N \leftarrow N \setminus \{j\}$$

The $C_{\cdot k}$ are the k clusters in the k^{th} level of the hierarchy.

How to Merge Clusters (What is d_C ?)

Average Linkage

$$d_C(C_i, C_j) = \frac{1}{\#(C_i)\#(C_j)} \sum_{x \in C_i} \sum_{x' \in C_j} d(x, x')$$

Complete Linkage

$$d_C(C_i, C_j) = \max_{x \in C_i, x' \in C_j} d(x, x')$$

Single Linkage

$$d_C(C_i, C_j) = \min_{x \in C_i, x' \in C_j} d(x, x')$$

► At iteration k

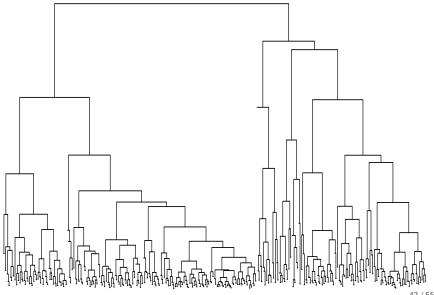
$$i, j \leftarrow \underset{\{i, j: i < j, i, j \in N\}}{\operatorname{argmin}} d_C(C_{ik}, C_{jk}).$$

▶ The "height" of this cluster merger is

$$h_k = d_C(C_{ik}, C_{jk})$$

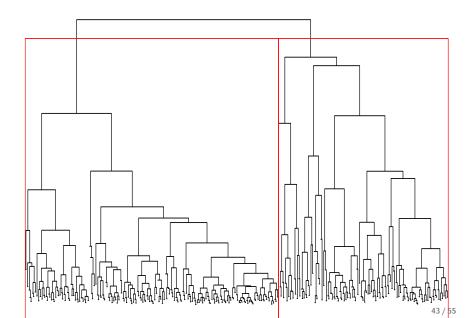
- The sequence h_n, \ldots, h_2 is monotonically increasing.
- ▶ Plot with heights of cluster mergers is a **dendrogram**.

Clustering Dendrogram of OGLE Data

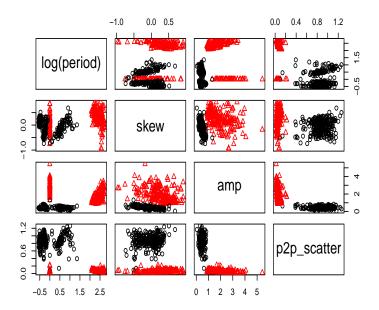


42 / 55

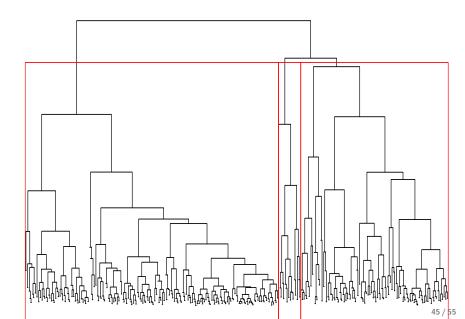
Two Clusters



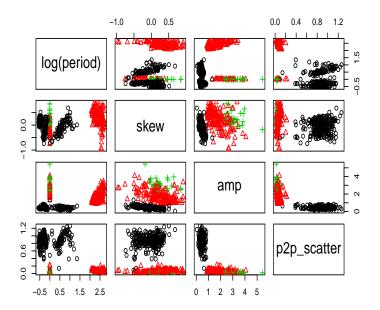
Two Clusters



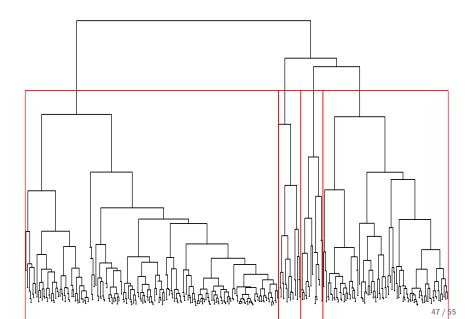
Three Clusters



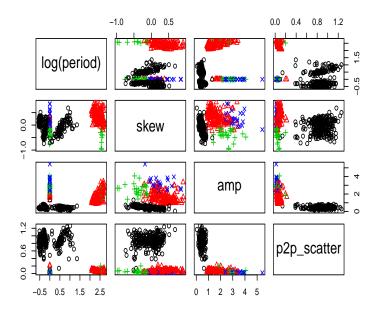
Three Clusters



Four Clusters



Four Clusters



- "Supervised detection of anomalous light curves in massive astronomical catalogs" Nun, Pichara, Protopapas, Kim ApJ 2014 [6]
 - Model voting distribution of random forest using Bayesian network. Outliers have unusual voting patterns.
- "Discovery of Bright Galactic R Coronae Borealis and DY Persei Variables: Rare Gems Mined from ACVS" Miller, Richards, Bloom, et al. [5]
 - Find rare R Cor Bor stars using random forest classifier, human analysis of light curves, and spectroscopic follow-up

More on Clustering and Outlier Detection

- many "knobs" in clustering methods
 - features
 - distance metric between features
 - ► hierarchical clustering, k-means, model based, etc.
- hard to statistically quantify successful clustering
 - may explain popularity of classification
- opinion: variable star "classification" is between the statistical concepts of clustering, classification, and outlier detection

Methodology: Statistical Classifiers

Methodology: CART Example with OGLE Data

Challenge 1: Selection of Training Data

Challenge 2: Classification versus Clustering

Conclusions and Opportunities

- statistical classification
 - 1. select training data
 - 2. extract features
 - 3. build classifier
 - 4. apply classifier to unlabeled data
- training data should "look like" unlabeled data
- classification as practiced in statistics does not always fit perfectly with what astronomers want to do

Opportunities for Learning More / Project Ideas

- ▶ join Working Group 2 (WG2)
- compete in WG2 classification challenge (starting October?)
- machine learning tutorial on SDSS: https://github.com/juramaga/clustering/blob/master/ machine-learning-on-SDSS.ipynb
- "Modeling Light Curves for Improved Classification" Faraway, J. Mahabal, A. et al. 2014 [3]
 Data available: http://people.bath.ac.uk/jjf23/modlc/
- outlier hunting in data set, eg OGLE http://ogledb.astrouw.edu.pl/~ogle/CVS/

Upcoming Topics in Time Domain

- astronomical motivation for time domain / variable sources
 - distance determination
 - period–luminosity relation
 - expansion of the universe
- feature extraction / modeling light curves
- ▶ example problem: mapping the Milky Way halo with RR Lyrae

Bibliography I

- Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. *Classification and regression trees.* Chapman & Hall/CRC, 1984.
- [2] P. Dubath, L. Rimoldini, M. Süveges, J. Blomme, M. López, LM Sarro, J. De Ridder, J. Cuypers, L. Guy, I. Lecoeur, et al. Random forest automated supervised classification of hipparcos periodic variable stars. *Monthly Notices of the Royal Astronomical Society*, 414(3):2602–2617, 2011.
- [3] Julian Faraway, Ashish Mahabal, Jiayang Sun, Xiaofeng Wang, Lingsong Zhang, et al. Modeling light curves for improved classification. arXiv preprint arXiv:1401.3211, 2014.
- [4] J.P. Long, N. El Karoui, J.A. Rice, J.W. Richards, and J.S. Bloom. Optimizing automated classification of variable stars in new synoptic surveys. *Publications of the Astronomical Society of the Pacific*, 124(913):280–295, 2012.
- [5] AA Miller, JW Richards, JS Bloom, SB Cenko, JM Silverman, DL Starr, and KG Stassun. Discovery of bright galactic r coronae borealis and dy persei variables: Rare gems mined from acvs. The Astrophysical Journal, 755(2):98, 2012.
- [6] Isadora Nun, Karim Pichara, Pavlos Protopapas, and Dae-Won Kim. Supervised detection of anomalous light curves in massive astronomical catalogs. The Astrophysical Journal, 793(1):23, 2014.
- [7] J.W. Richards, D.L. Starr, N.R. Butler, J.S. Bloom, J.M. Brewer, A. Crellin-Quick, J. Higgins, R. Kennedy, and M. Rischard. On machine-learned classification of variable stars with sparse and noisy time-series data. *The Astrophysical Journal*, 733:10, 2011.