The Netflix Prize and Collaborative Filtering

March 8, 2018
Outline

Netflix Prize

Collaborative Filtering

Identifying Idiosyncratic Raters
Outline

Netflix Prize

Collaborative Filtering

Identifying Idiosyncratic Raters
Netflix Prize

- Netflix users rate movies 1–5 stars.
- Netflix wants to recommend movies to users that they will like.

Goal: Predict rating that user will give movie they haven’t seen yet.
Netflix Challenge: Data

Predict the rating Josephine will give Harry Potter:

- **Simple Idea:** Predict 3 because Harry Potter received an average of 3.
- **Collaborative Filtering Idea:** Predict 4 because Josephine and Sophia have similar tastes and Sophia gave HP a 4.

<table>
<thead>
<tr>
<th></th>
<th>Titanic</th>
<th>Harry Potter</th>
<th>Indiana Jones</th>
<th>The Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Josephine</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Thomas</td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sophia</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pratik</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mark</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Evaluation Criteria

- Hide red cells when training the algorithm:

<table>
<thead>
<tr>
<th></th>
<th>Titanic</th>
<th>Harry Potter</th>
<th>Indiana Jones</th>
<th>The Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Josephine</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Thomas</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sophia</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Pratik</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mark</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Algorithm predicts \hat{s}_k for cell s_k. (every red cell)

- $RMSE = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (\hat{s}_k - s_k)^2}$. (could use other criteria)
Netflix Challenge: Data

Data Summary:

- $p =$ number of movies $\approx 20,000$
- $n =$ number of users $\approx 500,000$
- 100 million ratings in training set
- 2 million ratings in test set
Outline

Netflix Prize

Collaborative Filtering

Identifying Idiosyncratic Raters
Simple Models

1. For user i–movie j predict 3 stars. (RMSE \(\leq 2 \))
 - Does not use any information in training.

2. \(\hat{\mu} \) = mean stars in training. For user i–movie j, predict \(\hat{\mu} \).
 - Does not use any information about movie j.

3. \(\hat{\mu}_j \) = mean training stars for movie j. For user i–movie j, predict \(\hat{\mu}_j \).
 - Does not use any information about user i.

Note: Method 3 is an average of responses. Let

\[
R_j = \text{all users who rated movie j.}
\]

Then,

\[
\text{prediction for user i} = \frac{1}{\#R_j} \sum_{k \in R_j} x_{kj}
\]
Idea: Weight average by how close users i and k are to each other.

- Let w_{ik} be a measure of closeness (based on ratings) of i and k.
- Then

 $$\text{prediction for user } i = \frac{1}{\sum_{k \in R_j} w_{ik}} \sum_{k \in R_j} w_{ik} x_{kj}$$

Result: The same movie will receive a different prediction for different users.
Predict **Harry Potter** rating for **Josephine**. Suppose:

- Josephine and Sophia have $w = 1$
- Josephine and Mark have $w = 1/2$

\[
\text{prediction} = \frac{4 \times 1 + 2 \times (1/2)}{1 + 1/2} = 3.33
\]
Many different possible ways to measure similarity

- http://www.dataperspective.info/2014/05/basic-recommendation-engine-using-r.html

Methods which build similarities between users are “User Based” Collaborative Filtering

“Item Based” Collaborative Filtering constructs similarities between movies.

- Terminator and Die Hard are similar because users give them similar ratings.
Outline

Netflix Prize

Collaborative Filtering

Identifying Idiosyncratic Raters
Reasons for unusual ratings:

- Some users assign a random number of stars just to get to the next screen.
- Robots / trolls may deliberately give confusing ratings to movies.

Goal:

- Identify these users as a cleaning step before using a collaborative filtering algorithm.
Problem 24 from Lange Chapter 13:

- Suppose there are 5 possible ratings.
- User i operates in consensus mode $1 - \pi_i$ fraction of time.
 - In consensus mode i rates j with distribution $(c_{j1}, c_{j2}, c_{j3}, c_{j4}, c_{j5})$
- User i operates in quirky mode π_i fraction of time.
 - In quirky mode i has private rating distribution $(q_{i1}, q_{i2}, q_{i3}, q_{i4}, q_{i5})$
- The larger π_i, the more unusual the user.

The likelihood is

$$L = \prod_{i=1}^{n} \prod_{j \in M_i} (\pi_i q_{ixij} + (1 - \pi_i) c_{jxij})$$

where M_i is all movies rated by user i.

We study how to optimize this likelihood with the EM algorithm next week.
Software

- Python
 - Scikit for Recommender systems
 https://github.com/NicolasHug/Surprise
 - Example with MovieLens dataset: http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/

- R
 - R package:
 https://CRAN.R-project.org/package=recommenderlab
 - useage case: https://rpubs.com/jt_rpubs/285729
 - description of collaborative filtering
 https://www.smartcat.io/blog/2017/improved-r-implementation-of-collaborative-filtering/