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Hierarchical Statistical Models

I non hierarchical models: all observations X1, . . . ,Xn share same
parameter vector θ

I hierarchical models: each observation Xi has its own parameters
θi . the parameters θi have their own distribution with
parameters φ.

I best to see some hierarchical model examples

I computing for hierarchical models is generally challenging
I number of parameters on the same order as number of

observations
I conjugate models not available
I straightforward implementations of Gibbs / Metropolis not

feasible due to parameter size
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Example 1: Supernovae Model

10 Total Parameters:
I times (t0, t1, tp, t2, td)
I magnitudes (Yb,M1,Mp,M2,MdβdC

)
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Example 1: Supernovae Light Curve

I construct prior and likelihood
I collect data for star (green points)
I compute posterior and plot draws (red lines) 4 / 14



Example 1: Supernova Light Curves

Surveys collect many supernovae (2 examples above), each with their
own parameters.

I Need parameter estimates (e.g. slopes) for individual supernovae

I Need distributions of parameters across all supernove.
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Example 2: 1970 Batting Averages for 18 Players
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Example 2: Batting averages

I player i has some “true” average pi
I average after 45 at bats is estimate of pi

Xi = number hits for player i after 45 at bats

Xi ∼ Binomial(n = 45, pi)

p̂i =
Xi

45
MLE, could use Bayesian estimator

We are also interested in the distribution of pi e.g. what is
the range of typical batting averages?
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Why Not Fit Models Separately?

Fit separate model to each batter
I fit separate Binomial model for each batter
I p̂i = Xi

45

Result: Overdispersed estimate of population distribution of pi

Average After 45 At Bats

Average At End of Season
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Qualitative Reasoning

Problem:

I if we estimate population distribution from p̂i , we infer
more great hitters and more terrible hitters than there actually
are

I if we estimate population distribution of plateau duration from
individual SN fits, we infer more long duration plateaus and
more short duration plateaus than there actually are

Solution:
I inferences can be improved by “shrinking” estimates towards the

center of the population distribution
I The average of player averages after 45 at bats is .265.
I Clemente has .400 average after 45 at bats. Shrink Clemente

estimate down towards .265.
I Alvis has 0.156 average after 45 at bats. Shrink Alvis estimate

up towards 0.265.
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Hierarchical Models

Problem is clear, but solution details murky:

I how much to shrink?

I how to construct confidence / credible intervals for observation
level parameters?

I how do we estimate, quantify uncertainty in population level
parameters?

Bayesian Hierarchical models are a formal method for
answering these questions.
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Example: Batting Averages

I pi ∼ Beta(α, β)
I θ = (α, β) is unknown.
I Player i has true (unobserved) average pi .
I We observe Xi ∼ Binomial(45, pi) hits for player i .
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Goal: Use (X1, . . . ,Xn) to infer (p1, . . . , pn) and θ = (α, β).
11 / 14



Example: Batting Averages

The missing arrows imply conditional independence.
I X1 and θ are not independent.
I X1 and X2 are not independent.
I X1 is independent of X2 and θ given p1.

These Graphical models can assist in thinking about and constructing
the likelihood and prior.
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Example: Batting Averages

The posterior is

π(θ, ~p|~x) ∝ f (~x |θ, ~p)π(θ, ~p)

∝ f (~x |~p)π(~p|θ)π(θ)

∝

(
n∏

i=1

f (xi |pi)π(pi |θ)

)
π(θ)

where

f (xi |pi) =

(
45

xi

)
pxii (1− pi)

45−xi

π(pi |θ) =
1

B(α, β)
pα−1
i (1− pi)

β−1

π(θ) = prior on p distribution shape
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