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Hierarchical Statistical Models

» non hierarchical models: all observations Xi, ..., X, share same
parameter vector 0

» hierarchical models: each observation X; has its own parameters
;. the parameters #; have their own distribution with
parameters ¢.

» best to see some hierarchical model examples

» computing for hierarchical models is generally challenging
» number of parameters on the same order as number of
observations
» conjugate models not available
» straightforward implementations of Gibbs / Metropolis not
feasible due to parameter size
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Example 1: Supernovae Model
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Example 1: Supernovae Light Curve
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» construct prior and likelihood
» collect data for star (green points)
» compute posterior and plot draws (red lines) 414



Example 1: Supernova Light Curves
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Surveys collect many supernovae (2 examples above), each with their
own parameters.

» Need parameter estimates (e.g. slopes) for individual supernovae

» Need distributions of parameters across all supernove.
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Example 2: 1970 Batting Averages for 18 Players

1. 1970 Batting Averages for 18 Major League Players and Transformet

Y, = batting p; = batting At bats

average for average for for

i Player first 45 remainder remainder

at bats of season of season
(1) (2) (3)
1 Clemente (Pitts, NL) 400 346 367
2 F. Robinson (Balt, AL) 378 .298 426
3 F. Howard (Wash, AL) 356 276 521
4 Johnstone (Cal, AL) .333 222 275
5 Berry (Chi, AL) 31 273 418
6 Spencer (Cal, AL) 311 270 466
7 Kessinger (Chi, NL) 289 263 586
8 L. Alvarado (Bos, AL) 267 210 138
9 Santo (Chi, NL) 244 .269 510
10 Swoboda (NY, NL) 244 .230 200
1 Unser (Wash, AL) 222 264 277
12 Williams (Chi, AL) 222 .256 270
13 Scott (Bos, AL) 222 303 435
14 Petrocelli (Bos, AL) 222 264 538
15 E. Rodriguez (KC, AL) 222 226 186
16 Campaneris (Oak, AL) .200 .285 558
17 Munson (NY, AL) 178 316 408
18 Alvis (Mil, NL) .156 .200 70

Efron and Morris JASA 1975
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Example 2: Batting averages

» player i has some “true” average p;
» average after 45 at bats is estimate of p;

X; = number hits for player i after 45 at bats
X; ~ Binomial(n = 45, p;)

pi = 4—5' MLE, could use Bayesian estimator

We are also interested in the distribution of p; e.g. what is
the range of typical batting averages?
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Why Not Fit Models Separately?

Fit separate model to each batter
» fit separate Binomial model for each batter

/\_XI-
> Pi = 75

Result: Overdispersed estimate of population distribution of p;

Average After 45 At Bats
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Average At End of Season
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Qualitative Reasoning

Problem:

» if we estimate population distribution from p;, we infer
more great hitters and more terrible hitters than there actually
are

» if we estimate population distribution of plateau duration from
individual SN fits, we infer more long duration plateaus and
more short duration plateaus than there actually are

Solution:

» inferences can be improved by “shrinking” estimates towards the
center of the population distribution
» The average of player averages after 45 at bats is .265.
» Clemente has .400 average after 45 at bats. Shrink Clemente
estimate down towards .265.
» Alvis has 0.156 average after 45 at bats. Shrink Alvis estimate
up towards 0.265.
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Hierarchical Models

Problem is clear, but solution details murky:
» how much to shrink?

» how to construct confidence / credible intervals for observation
level parameters?

» how do we estimate, quantify uncertainty in population level
parameters?

Bayesian Hierarchical models are a formal method for
answering these questions.
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Example: Batting Averages

pi ~ Beta(a, 3)

0 = («, B) is unknown.

Player i has true (unobserved) average p;.

We observe X; ~ Binomial(45, p;) hits for player i.

vV v vy

T
0.0 0.2 0.4 0.6 0.8 1.0

Goal: Use (Xi,...,X,) to infer (p1,...,pn) and 6 = («, B).
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Example: Batting Averages

The missing arrows imply conditional independence.

» X; and 6 are not independent.

» X1 and X, are not independent.

» Xi is independent of X; and ¢ given p;.
These Graphical models can assist in thinking about and constructing
the likelihood and prior.

12/14



Example: Batting Averages

The posterior is

where
45\ . e
f(xilpi) = (X_)pi'(l —p)*

1 -1 -1
m(pil0) = 5——=p" (1 — pi)°
R )
7(0) = prior on p distribution shape
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