

Newton's Method for Root Finding and Optimization: One Dimension

STAT 689: Statistical Computing

February 15, 2018

Newton's Method for Root Finding

Newton's Method for Optimization

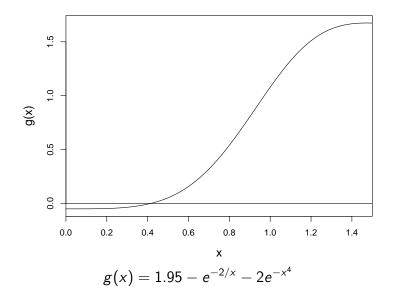
Example: Extinction Probabilities

Newton's Method for Root Finding

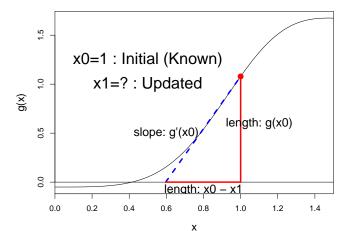
Newton's Method for Optimization

Example: Extinction Probabilities

Goal: Find Root of g

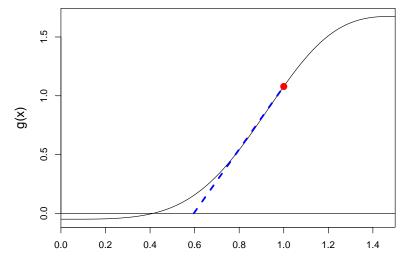


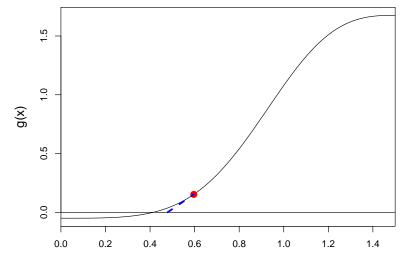
Newton: Approximate as Linear Near Root

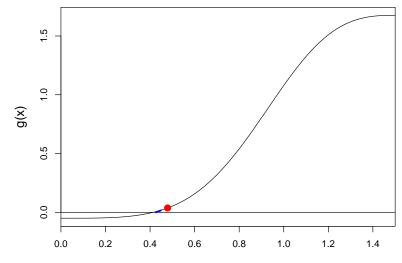


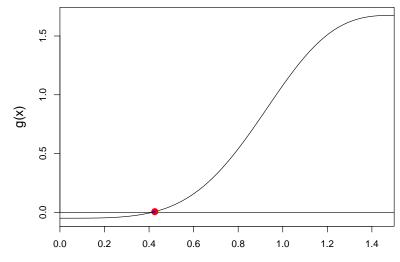
 $g'(x_0)(x_0 - x_1) = g(x_0)$ $x_1 = x_0 - g(x_0)/g'(x_0)$

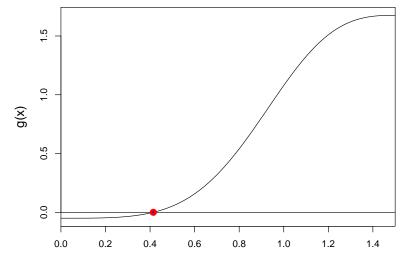
Iteration 1: Initial guess $x_0 = 1$

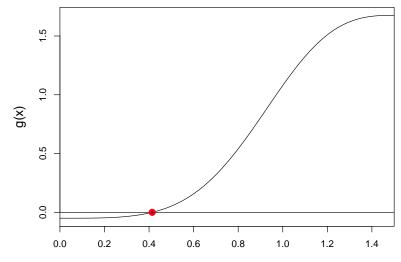












General formulation

$$x_n = x_{n-1} - g(x_{n-1})/g'(x_{n-1})$$

Here

$$g(x) = 1.95 - e^{-2/x} - 2e^{-x^4}$$
$$g'(x) = -2x^{-2}e^{-2/x} + 8x^3e^{-x^4}$$

So iterations are very fast.

Speed of Convergence

Bisection:

- ▶ start with interval [*a*, *b*]
- interval is cut in half at each iteration
- width of interval at iteration n is $2^{-n}(b-a)$
- let e_n be error at iteration n:

$$e_n \approx e_{n-1}/2$$

▶ this is <u>linear</u> convergence

Newton:

Newton has quadratic convergence (see textbook)

$$e_n pprox Ce_{n-1}^2$$

twice as many significant digits at each iteration

- ► R is a strongly functional language
- functions can go almost anywhere, including as arguments to functions
- very convenient for writing Newton's algorithm

```
## g = function to find root
g <- function(x) 1.95 - exp(-2/x) - 2*exp(-x^4)
## gd = derivative of g
gd <- function(x) -2*x^{-2}*exp(-2/x) + 8*x^3*exp(-x^4)
## update x
newton_update <- function(x,g,gd) x - g(x)/gd(x)</pre>
```

Newton's Method for Root Finding

Newton's Method for Optimization

Example: Extinction Probabilities

Use Newton's Method for Optimization

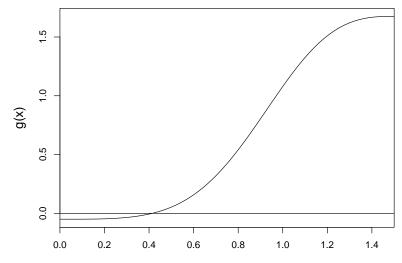
▶ in optimization, we find the (arg) maximum of g

$$x^* = \operatorname*{argmax}_{x} g(x)$$

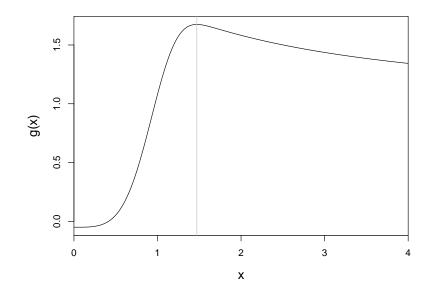
- ► this is often a root of g' (assuming differentiability, no domain constraints)
- ▶ apply newton's method to g'

$$x_n = x_{n-1} - \frac{g'(x_{n-1})}{g''(x_{n-1})}$$

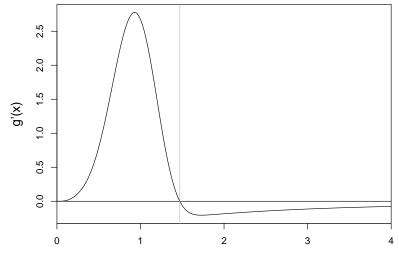
Consider the Same Function g



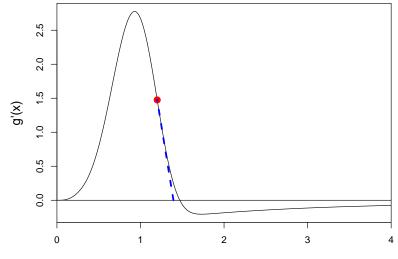
Zoom Out: Let's Find the Maximum with Newton

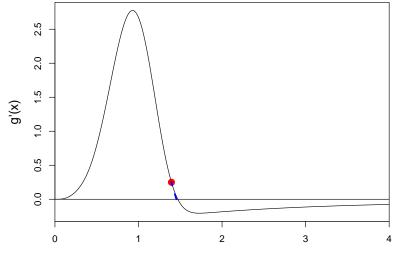


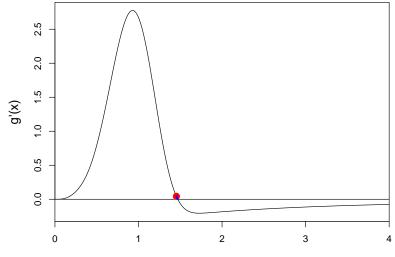
Compute g'

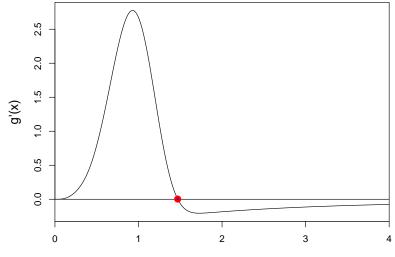


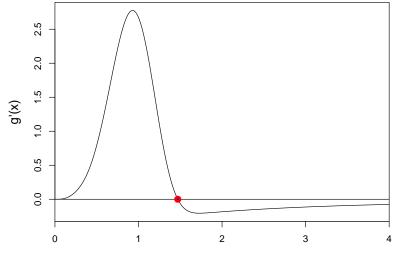
Iteration 1: Starting at $x_0 = 1.2$

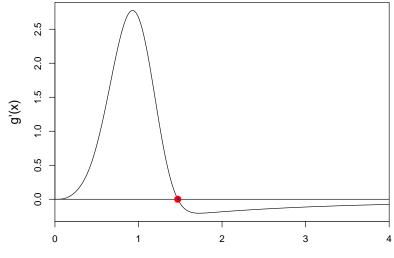












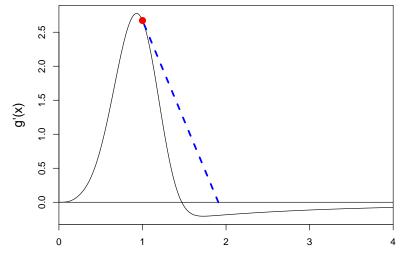
Convergence Problems

- Newton's method is looking for roots
 - could be local max
 - could be local / global min
- Newton can overshoot target (see next slide)

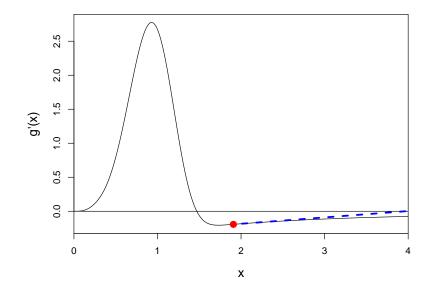
In general, need to start near solution and test that updates are increasing g.

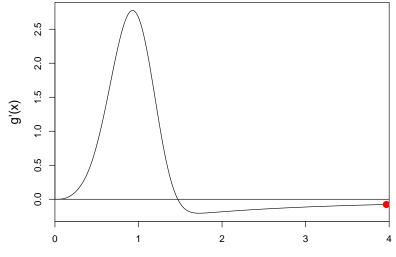
We discuss these issues more in future lectures.

Iteration 1: Bad start at $x_0 = 1.0$

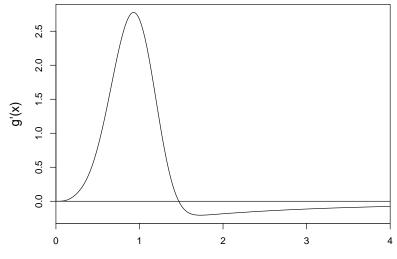


Х





Iteration 4: The Red Dot Was Never Seen Again



Newton's Method for Root Finding

Newton's Method for Optimization

Example: Extinction Probabilities

Recall

- organism reproduces asexually
- probability of k offspring is p_k
- what is the probability that line will go extinct?

Define

- s_e be the probability of going extinct.
- *n* is maximum possible number of children, so p_0, \ldots, p_n .

Then

$$egin{aligned} s_e &= \sum_{i=0}^n P(ext{extinct}| ext{i children})P(ext{i children}) \ &= \sum_{i=0}^n s_e^i p_i \end{aligned}$$

 $P(\text{extinct}|\text{i children}) = s_e^i$ because if the first organism has *i* children, then the probability of going extinct is the probability that all the children's lines go extinct, s_e^i .

Finding s_e is equivalent to finding root of

$$g(s) = \sum_{i=0}^{n} s^{i} p_{i} - s = p_{0} + (p_{1} - 1)s + \sum_{i=2}^{n} p_{i} s^{i}$$

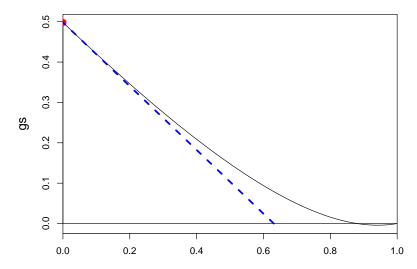
Easy to compute

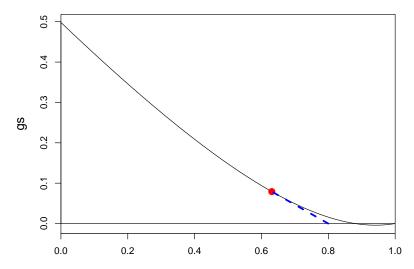
$$g'(s)=\sum_{i=1}^n i s^{i-1} p_i-1$$

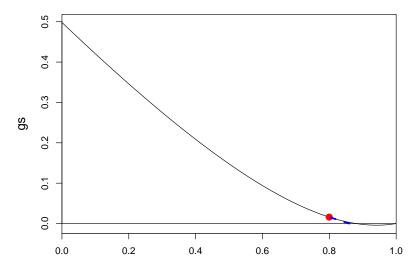
Consider the *p* coefficients from Lange:

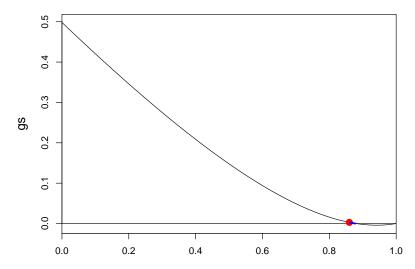
p = [0.4982,0.2103,0.1270,0.0730,0.0418, 0.0241,0.0132,0.0069,0.0035,0.0015,0.0005]

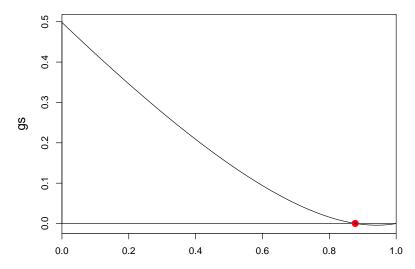
Iteration 1: Initial guess $x_0 = 0$



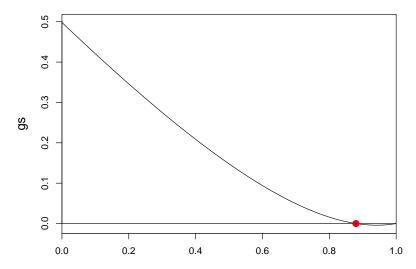








Iteration 6: $x_5 = 0.8797552$



R Code

```
rm(list=ls())
p = c(0.4982, 0.2103, 0.1270, 0.0730, 0.0418,
      0.0241, 0.0132, 0.0069, 0.0035, 0.0015, 0.0005)
coeffs <- p
coeffs[2] <- coeffs[2] - 1
g <- function(s){
    return(sum(s^(0:(length(coeffs)-1))*coeffs))
}
gd <- function(s){
    n <- length(coeffs)</pre>
    return(sum((1:(n-1))*coeffs[2:n]*s^(0:(n-2))))
}
```

```
## perform newton updates
newton_update <- function(x,g,gd) x - g(x)/gd(x) 40/41</pre>
```

R Code

}

##	[1]	"iteration:	1	Estimate:	0"
##	[1]	"iteration:	2	Estimate:	0.6309"
##	[1]	"iteration:	3	Estimate:	0.7997"
##	[1]	"iteration:	4	Estimate:	0.86"
##	[1]	"iteration:	5	Estimate:	0.8776"
##	[1]	"iteration:	6	Estimate:	0.8797"