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Standard Regression Model

Intrinsic Scatter and Heteroskedastic y Error

MLEs and Fisher Information

2 / 43



Outline

Standard Regression Model

Intrinsic Scatter and Heteroskedastic y Error

MLEs and Fisher Information
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Ordinary Least Squares Model

I yi = β0 + β1xi + εi where εi ∼ N(0, σ2)

I Parameters: (σ2, β0, β1).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

0 1 2 3 4 5 6 7

2
4

6
8

10

x

y

4 / 43



Estimate (σ2, β0, β1) with Maximum Likelihood

σ̂2, β̂0, β̂1 = argmax
(σ2,β0,β1)

L((σ2, β0, β1)|D)

= argmax
(σ2,β0,β1)

n∏
i=1

1√
2πσ2

e−(yi−β0−β1xi )
2/(2σ2)

After some calculus

β̂0 = ȳ − β̂1x̄

β̂1 =
n−1

∑
xiyi − x̄ ȳ

n−1
∑

x2i − x̄2

σ̂2 =
1

n

∑
(yi − β̂0 − β̂1)2

Can replace 1/n with 1/(n − 2) in σ̂2 formula.
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Use Matrices

Y =


y1
y2
...
yn

 ∈ Rn×1 X =


1 x1
1 x2
...

...
1 xn

 ∈ Rn×2 ε ∼ N(0, σ2I ) ∈ Rn×1

β =

(
β0
β1

)
Linear regression is now

Y = Xβ + ε

Maximum Likelihood in Matrix Form

β̂ = (XTX )−1XTY

σ̂2 = n−1(Y − X β̂)T (Y − X β̂)
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Uncertainty on β

I We are in frequentist mode (no priors).

I Assess uncertainty with sampling distribution:

1. Repeat data collection process over and over.
2. Compute β̂ each time.
3. Uncertainty on β̂ is some function (usually variance) of

sampling distribution.
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2

4
6

8
10

x

y

Truth
Estimate

●

1.5 2.0 2.5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

β̂0

β̂ 1

●
● ●

●

●

●

●
● ●

●

●

True Parameters
Estimates

16 / 43



Example: β = (2, 1.5)T , σ2 = 1
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Example: β = (2, 1.5)T , σ2 = 1

Repeat 89 more times.
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Example: β = (2, 1.5)T , σ2 = 1
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Covariance of β

Covariance (based on simulation) is:

Cov (β̂) =

(
0.080 −0.029
−0.029 0.012

)

So

sd(β̂0) =

√
Var (β̂0) ≈

√
0.08 ≈ 0.28

sd(β̂1) =

√
Var (β̂1) ≈

√
0.012 ≈ 0.11

Simulation Has Major Weaknesses:

I What about β 6= (2, 1.5)T or σ2 6= 1?

I Since I don’t know β or σ2, how can this be used?
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Better Solution: Statistical Theory

Var (β̂) = Var ((XTX )−1XTY )

= Var ((XTX )−1XT (Xβ + ε))

= Var (β + (XTX )−1XT ε)

= (XTX )−1XTVar (ε)X (XTX )−1)

= σ2(XTX )−1

So
V̂ar (β̂) = σ̂2(XTX )−1

Variances for β̂0 and β̂1 are derived from this. n is “built–into” XTX .
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For First Simulation Run
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β̂ =

(
1.70
1.58

)
V̂ar (β̂) =

(
0.087 −0.030
−0.030 0.012

)
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Outline

Standard Regression Model

Intrinsic Scatter and Heteroskedastic y Error

MLEs and Fisher Information
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Intrinsic Scatter + Measurement Error

I Each observation may come with its own y measurement error.

I Assume that error in y is now due to intrinsice scatter around
the line (σ) and observation specific uncertainty (σyi)

I We assume σyi known, could loosen this assumption.

Intrinsic Scatter and y (Normal) Measurement Error

Y = Xβ + ε

where
ε ∼ N(0,Σ)

where Σ is a diagonal matrix with Σii = σ2 + σ2
yi .

β and σ are unknown parameters.
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General Weighted Least Squares Estimators

I Let W be a diagonal weight matrix.

I Consider estimators of the form

β̂(W ) = (XTWX )−1XTWY .

Possible Weight Matrices:

I W1,ii = 1

I W2,ii = σ−2yi

I W3,ii = (σ2
yi + σ2)−1

Recall W3 is not known because σ2 is unknown.
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β = (2, 1.5)T , σ = 0.1 with Heteroskedastic Error
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Sampling Distributions
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W3 is best, but it depends on σ which is unknown.
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Maximum Likelihood with Intrinsic Scatter

σ̂2, β̂0, β̂1 = argmax
(σ2,β0,β1)

L((σ2, β0, β1)|D)

= argmax
(σ2,β0,β1)

n∏
i=1

1√
2π(σ2 + σ2

i )
e−(yi−β0−β1xi )

2/(2(σ2+σ2
i ))

I No closed form solution.

I But at fixed σ, closed form solution.

I Evaluate likelihood at each σ in grid.

I Choose value of σ which maximizes likelihood.
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Minimize Negative Log Likelihood

Define W (σ2) to be diagonal matrix with W (σ2)ii = (σ2
i + σ2)−1.

σ̂2, β̂0, β̂1 = argmin
(σ2,β0,β1)

n∑
i=1

log(σ2 + σ2
i ) + (Y − Xβ)TW (σ2)(Y − Xβ)

So

σ̂2 = argmin
σ2

min
β0,β1

n∑
i=1

log(σ2 + σ2
i ) + (Y − Xβ)TW (σ2)(Y − Xβ)

= argmin
σ2

n∑
i=1

log(σ2 + σ2
i ) + (Y − X β̂(σ2))TW (σ2)(Y − X β̂(σ2))︸ ︷︷ ︸

≡SSML(σ2)

where
β̂(σ2) = (XTW (σ2)X )−1XTW (σ2)Y

I Grid search on σ to find σ̂.
I β̂ = β̂(σ̂). 29 / 43



Simulation
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Maximum Likelihood
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Quantify Uncertainty on ML Estimates

The maximum likelihood estimate for the parameters is

(σ̂2, β̂0, β̂1) = (0.0092, 1.9988, 1.5057)

I Since this is simulation we know the truth (0.01, 2, 1.5).

I In practice, need to report uncertainty on our estimates.

Sampling Distribution

I Generate the data many times.

I Calculate (σ̂2, β̂0, β̂1) each time.

I Calculate variance of resulting data.
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Empirical Sampling Distribution of ML Estimator
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Variance of (σ̂2, β̂)

Variance (based on simulation) is:

Var ((σ̂2, β̂)) =

 9.46× 10−6 −1.76× 10−6 1.27× 10−6

−1.76× 10−6 3.31× 10−3 −1.23× 10−3

1.27× 10−6 −1.23× 10−3 4.97× 10−4


So

sd(σ̂2) =
√

Var (σ̂2) ≈
√

9.46× 10−6 ≈ 0.0031

sd(β̂0) =

√
Var (β̂0) ≈

√
3.31× 10−3 ≈ 0.0576

sd(β̂1) =

√
Var (β̂1) ≈

√
4.97× 10−4 ≈ 0.0223

Simulation Has Major Weaknesses:
I What about β 6= (2, 1.5)T or σ2 6= 0.12?
I Since I don’t know β or σ, how can this be used?
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Analytic Method

Var (β̂) = Var
(

(σ̂, β̂0, β̂1)
)

= Var

(
argmin
(σ2,β0,β1)

n∑
i=1

(
log(σ2 + σ2

i ) +
(yi − β0 − β1xi)2

(σ2 + σ2
i )

))
= . . .

Need more powerful statistical tools.
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Outline

Standard Regression Model

Intrinsic Scatter and Heteroskedastic y Error

MLEs and Fisher Information
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MLE Asymptotics

Asymptotics: The study of how estimators behave as the sample sizes
gets larger.

Consistency of MLEs:

θ̂MLE →P θ (as n→∞)

Asymptotic Normality of MLE:

√
n(θ̂MLE − θ)→d N(0, I (θ)−1)

where

I (θ) = −E
[
d2

dθ2
log f (X |θ)

]
is called the Fisher information matrix.
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Estimating I (θ)−1

I (θ)−1 is unknown, but we can estimate it:

I (θ) = −E
[
d2

dθ2
log f (X |θ)

]
≈ − d2

dθ2
log f (X |θ)|θ=θ̂ML

≡ Î (θ̂ML)

Significance: We can quantify the MLE uncertainty by computing
the negative Hessian of the log likelihood at the MLE.
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Application to Intrinsic Scatter Model

I θ̂ML = (σ̂2, β̂0, β̂0)

I Var (θ̂ML) ≈ Î (θ̂ML)−1.

Î (θ̂ML) = −

(
d2 log(f (X |θ))

(dσ2)2
d2 log(f (X |θ))

dσ2dβ

d2 log(f (X |θ))
dσ2dβ

T d2 log(f (X |θ))
dβ2

)∣∣∣∣
θ=θ̂ML

Î (θ̂ML) is the negative Hessian evaluated at θ̂ML. Also known as the
observed information.
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Computing Î (θ̂ML): Calculus Exercise

log(f (X |θ)) ∝ −1

2

∑
log(σ2

yi + σ2)− 1

2
(Y − Xβ)TW (σ2)(Y − Xβ)

So

d2 log(f (X |θ))

dβ2
= −XTW (σ2)X

d2 log(f (X |θ))

(dσ2)2
=

1

2
(σ2

yi + σ2)−2 − (Y − Xβ)TW (σ2)3(Y − Xβ)

d2 log(f (X |θ))

dσ2dβ
= −Y TW (σ2)2X + βTXTW (σ2)2X
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Solution

For the intrinsic scatter problem:

(σ̂2, β̂0, β̂1) = (0.0092, 1.9988, 1.5057)

and the estimate of the variance is

Var ((σ̂2, β̂)) =

 9.36× 10−6 1.75× 10−5 −9.19× 10−6

1.75× 10−5 3.21× 10−3 −1.22× 10−3

−9.19× 10−6 −1.22× 10−3 5.16× 10−4



This is done using a single sample.

41 / 43



Estimate, Truth, Sampling Distribution, 95% CI
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Important Points

I Statistical theory shows that uncertainty in MLE is
approximately the negative Hessian of the log likelihood.

I In some models (such as intrinsic scatter model), analytically
computing Hessian is not too bad. If so, estimating uncertainty
is straightforward.

I In other models, we must numerically approximate Hessian.

I optim in R and scipy.optimize in python (with BFGS)
approximate Hessians, simultaneously providing parameter
estimates and uncertainties for MLEs in complex models.
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