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Introduction

A circadian clock is a biochemical oscillator that cycles with a stable phase
and is synchronized with solar time. Such a clock’s period is almost
exactly 24 hours. We will be looking for patterns in cycles of different
genes expressions in following data sets:

Circadian Gene Data Set from Bell-Pederson’s Lab at TAMU

Circadian Gene Transcription in Mammals from Hughes M. E., et al.
(2009).
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Part 1

Clustering
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Data from Bell-Pederson’s Lab

Each gene expression was measured at times 12 through 48 in time
increments 4 hours.

Three replicates at each time.

For this report we are averaging two closest expression values at each
time for each gene.
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Data from Bell-Pederson’s Lab

Genes NCU00003 - NCU00023: great variety of curves.
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Data from Bell-Pederson’s Lab

Complications:

Limited number of time points for identifying global features.

There are no known groups.

Patterns are hard to be discovered with distance based clustering
applied to set directly.
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Feature creation

To discover similar patterns in curves, three global features were defined
for each gene:

Range - the difference between expressions global maximum and
minimum.

First Maximum - the time point when the global maximum occurred.

Period - how many time points passed between First Maximum and
next local maximum.
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Feature creation
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Feature creation

We are not considering observations which have either of the following:

Range > 2800

First Maximum at time point 12 or 48

Period = 0
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Feature creation
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K-means clustering

Within groups sum of squares
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K-means clustering

Size of clusters on scaled features:

737, 1392, 594, 1789, 1608, 84

cluster range first max period

1 -0.10610539 1.15061433 1.1050496
2 -0.12605145 -0.58417277 -1.0064050
3 0.09697282 -0.99034995 1.8979287
4 -0.11996359 -0.68248834 0.1804918
5 -0.12868199 1.10088752 -0.5734642
6 7.35234461 0.04973953 0.6947048

Table: Clusters on scaled features
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K-means clustering

Back to original:

cluster range first max period

1 19.85818 3.920838 2.289070
2 27.06229 2.882210 3.532900
3 1403.95437 5.047619 3.952381
4 24.19197 7.485753 4.423338
5 20.01545 7.375622 2.496891
6 54.13207 2.740614 5.351536

Table: Clusters on original features
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K-means clustering

first max
2 3 4 5 6 7 8 9

1 0 0 0 0 171 204 195 167

2 253 277 575 287 0 0 0 0

3 217 312 65 0 0 0 0 0

4 432 562 396 399 0 0 0 0

5 0 0 0 0 431 405 509 263

6 3 36 6 5 0 16 13 5

Table: Occurrences in clusters [First Max]
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K-means clustering

period
2 3 4 5 6 7

1 0 0 492 187 49 9

2 1392 0 0 0 0 0

3 0 0 8 410 146 30

4 0 1141 648 0 0 0

5 809 799 0 0 0 0

6 16 15 13 37 3 0

Table: Occurrences in clusters [Period]
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K-means clustering

Cluster 1
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K-means clustering

Cluster 3
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K-means clustering

Cluster 4
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Part 2

Bayesian Inference for Sinusoidal Model
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Sinusoidal model

Some genes expression data perform like sinusoidal curves over time, one
important goal is to estimate the period in the sinusoidal model.

Suppose

yt = νcos(ωt + ϕ) + εt for t = t1, t2, . . . , tn (1)

where ν is the amplitude, ω is the frequency, ϕ is the phase angle.

εt – Noise at time t

independent and identically distributed, εt ∼ N (0, σ2)
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Equivalent form

The Sinusoidal model (1) is equivalent to

yt = γ1cos(ωt) + γ2sin(ωt) + εt (2)

where ν =
√
γ21 + γ22 , ϕ = −arctan(γ2γ1 ) .
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Matrix form

In Matrix notation, we write model (2) as:

y = Aγ + ε (3)

where

y =

y1
...
yn

 A =

cos(ωt1) sin(ωt1)
...

...
cos(ωtn) sin(ωtn)

 γ =

(
γ1
γ2

)
ε =

ε1...
εn



We have y ∼ N (Aγ, σ2In)

Jingjie Zhang, Elina Sergeeva (Texas A&M) April 23, 2018 23 / 40



Inference based on Gibbs Sample

The joint posterior distribution is given by

π(ω, γ, σ2|y) ∝ f (y |ω, γ, σ2)π(ω, γ, σ2)

The prior distribution (suggested by Dou and Hodgson, 1995) is:

π(ω, γ, σ2) ∝ 1 · 1 · π(σ2) ∝ 1

σ2

Then the posterior can be written as:

π(ω, γ, σ2|y) ∝ (σ2)−
n
2
−1exp

(
−(y − Aγ)T (y − Aγ)

2σ2

)
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Conditional posterior for Amplitude γ

Recall γ =

(
γ1
γ2

)
, then

π(γ|ω, σ2, y) ∝ f (y |ω, γ, σ2)π(ω, γ, σ2)

∝ exp

(
−(y − Aγ)T (y − Aγ)

2σ2

)
∝ exp

(
−γ

TATAγ − 2γTAT y

2σ2

)
∼ N2

(
(ATA)−1AT y , σ2(ATA)−1

)
We can sample γ directly from the bivariate Gaussian distribution.
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Conditional posterior for Noise variance σ2

π(σ2|ω, γ, y) ∝ f (y |ω, γ, σ2)π(ω, γ, σ2)

∝ (σ2)−
n
2
−1exp

(
−(y − Aγ)T (y − Aγ)

2σ2

)
∼ IG

(
n

2
,

(y − Aγ)T (y − Aγ)

2

)

We can sample σ2 directly from the inverse gamma distribution.
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Conditional posterior for Frequency ω

Recall A =

cos(ωt1) sin(ωt1)
...

...
cos(ωtn) sin(ωtn)


then

π(ω|γ, σ2, y) ∝ f (y |ω, γ, σ2)π(ω, γ, σ2)

∝ exp

(
−(y − Aγ)T (y − Aγ)

2σ2

)

we can’t sample ω directly!
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Conditional posterior for Frequency ω

Laplace approximation

MAP estimator

ω̂MAP = argmaxω

{
exp

(
−(y − Aγ)T (y − Aγ)

2σ2

)}
= argminω

{
(y − Aγ)T (y − Aγ)

}
Hessian at ω̂MAP

H = −
γT (∂A∂ω )T (∂A∂ω )γ

σ2

∣∣∣
ω=ω̂MAP

= − 1

σ2
(XT

ω Xω)

where Xω = (∂A∂ω )γ|ω=ω̂MAP
.
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Conditional posterior for Frequency ω

Then approximately, we have

π(ω|γ, σ2, y) ∼ N (ω̂MAP , σ
2(XT

ω Xω)−1)

from which we can easily draw samples.
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Gibbs Sampler

Algorithm

1. Initialize ω[0], σ2
[0]
, γ[0]

2. For i=1, 2, ..., N

Draw the amplitude

γ[i ] ∼ N2

((
A[i−1]TA[i−1]

)−1
A[i−1]T y , σ2

[i−1]
(
A[i−1]TA[i−1]

)−1
)

Draw the noise variance

σ2
[i ] ∼ IG

(
n

2
,

(
y − A[i−1]γ[i ]

)T (
y − A[i−1]γ[i ]

)
2

)

Calculate the MAP estimator ω̂
[i ]
MAP

Draw the frequency

ω[i ] ∼ N
(
ω̂
[i ]
MAP , σ

2[i ](X [i ]
ω

T
Xω

[i ])−1
)
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Simulation

Simulation setting:

yt = γ1cos(ωt) + γ2sin(ωt) + εt

with γ1 = 0.2, γ2 = 0.41, ω = 0.74 and εt ∼ N (0, 0.42).

Sample size n = 100

Time t = 0.3, 0.6, . . . , 29.7, 30
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Simulation result

By running Gibbs sampler, we get the estimation

ω̂ = 0.7360

with 95% credible interval [0.7328, 0.7420].
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Application to gene expression data

Data Source: Hughes M. E., et al. (2009). Harmonics of circadian
gene transcription in mammals. PLoS Genet,5(4), e1000442.

This data set lists expression profiles of 20 circadian transcripts with
1h-resolution covering two days.

geneName CT1 CT2 ... CT48

Hist1h1c 1416101 2700.3357 2394.2878 ... 2502.8316
Fkbp5 1448231 60.4610 56.3778 ... 64.86352
...

...
... ...

...
Tef 1424175 794.4965 635.3928 ... 690.0365
Nr1d2 1416958 1098.2922 1035.3626 ... 862.4657

Table: Gene expression data
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Application to gene expression data

For gene Avpr1a 1418603, we get ω̂ = 0.25821.
95% credible interval [0.25810, 0.25825].
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Application to gene expression data

For gene Lipg 1421262, we get ω̂ = 0.27506.
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Application to gene expression data

For gene Hsp90aa1 1437497, we get ω̂ = 0.26904.
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Application to gene expression data

For gene Tsc22d3 1420772, we get ω̂ = 0.26302.
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Conclusions

The cycle of the circadian gene varies by species which is commonly 24
hours for mammals. As far as data from Professor Bell-Pederson’s Lab was
collected at only 10 time points during a period of 36 hours and species
are not specified it is challenging to capture the real period. Still we
consider performed k-means clustering useful as primary filter for further
implementation of more advanced methods for identifying genes behavior.

The Bayesian Inference for sinusoidal model on the Hughes dataset with
larger time frame has proved that it is possible to capture specific of a
circadian gene and the estimation is quite good.
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Thanks!
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