
Collaborative Filtering for 
Movie Recommendations

Alex Riley
Katelyn Stringer



Types of Recommendation Systems

● Content-based
● User-based
● Hybrid
● More sophisticated models...

2

*



Types of Recommendation Systems

● Content-based
● User-based
● Hybrid
● More sophisticated models...

3

*



User-Based Collaborative Filtering

1. Quantify similarities between users by comparing previous ratings
2. Predict ratings using a weighted combination of other ratings 

       -- Weights = similarity of users

4

*



20 Million movie ratings

● 1995 ‒ 2015
● Users selected at random
● Must have ≥ 20 ratings
● No identifying information

https://movielens.org 5



The MovieLens Data Set

● Ratings are 0.5 - 5 stars 
○ 0.5 star increments

● Users are identified by ID number
● Movie IDs match titles in sep. file
● Other quantities available:

○ Tags, genre, time stamps

6



The MovieLens Data Set

● Ratings are 0.5 - 5 stars 
○ 0.5 star increments

● Users are identified by ID number
● Movie IDs match titles in sep. file
● Other quantities available:

○ Tags, genre, time stamps

7



The MovieLens Data Set

● Ratings are 0.5 - 5 stars 
○ 0.5 star increments

● Users are identified by ID number
● Movie IDs match titles in sep. file
● Other quantities available:

○ Tags, genre, time stamps

20 Million → 100,000 ratings
8



Formatting the Data

Convert to matrix for analysis

User Movie Rating

25661 50 1

32890 50 5

50987 60 3

32890 60 2

Movie 50 60

User

25661 1 NaN

32890 5 2

50987 NaN 3

pandas.pivot_table

9

*



Calculating Similarity

1. Pearson Correlation Coefficient
2. Cosine Similarity

Image Credit: http://guides.neo4j.com/sandbox/recommendations

Pros:
● Easy (pandas.corr)
● Accounts for “niceness” of user-- measures scatter 

around mean of ratings
Cons:

● Overestimates similarity for very few overlaps 
between users 

○ same rating for one movie gives sim=1

10

*



Calculating Similarity

1. Pearson Correlation Coefficient
2. Cosine Similarity

Image Credit: http://guides.neo4j.com/sandbox/recommendations

Pros:
● Boils down to direct matrix math

○ check with sklearn’s pairwise_distances
● Weight factor [0,1] means no negative predictions

Cons:
● Matrix multiplication with NaNs -> replace with 0s, 

depresses similarity

11



Result: Similarity Matrix

12

User 25661 32890 50987 60453

User

25661 1 NaN 0.98 0.66

32890 NaN 1 -0.23 0.59

50987 0.98 -0.23 1 NaN

60453 0.66 0.59 NaN 1

*



Predicting Ratings

A = user

k = index of other user

R
j
 = set of users who rated movie j

13

*



14

User 25661 32890 50987 60453

User

25661 1 NaN 0.98 0.66

32890 NaN 1 -0.23 0.59

50987 0.98 -0.23 1 NaN

60453 0.66 0.59 NaN 1Movie 50 60 89 103 973

User

25661 1 NaN / 0 3 5 2

32890 5 2 NaN /0 3 1

50987 NaN / 0 3 4 4 NaN / 0

60453 5 1 4.5 3 2.5

*



Predicting Ratings

1*NaN + NaN*2 + 0.98*3 + 0.66*1

     ( NaN + NaN + 0.98 + 0.66 )

15

=   3.34 for movie # 60 
         for user 25661   

*



Measuring Performance

Split data into training (80%)  & test (20%) sets 

Movie 50 60 89 103 973

User

25661 1 NaN / 0 3 5 2

32890 5 2 NaN /0 3 1

50987 NaN / 0 3 4 4 NaN / 0

60453 5 1 4.5 3 2.5
16



Measuring Performance: 
Pearson
Use the training data to 
predict the test ratings

    MSE ≅ 10.8667

Actual Rating

P
re

di
ct

ed
 R

at
in

g
17



Measuring Performance: 
Cosine
Use the training data to 
predict the test ratings

    MSE ≅ 10.7631

Actual Rating

P
re

di
ct

ed
 R

at
in

g
18



Top-k Filtering: Cosine

How many similar 
users should be 
considered when 
making 
recommendations? 

19



The Ultimate Test...

20

*



Katelyn’s Input

21

*



Katelyn’s Results: Pearson Similarity
Recommended: NOT Recommended:

Image Credit: IMDb
22

*



Alex’s Input

23



Alex’s Results: Cosine Similarity

Recommended: NOT Recommended:

24Image Credit: IMDb



How Can We Make it Better?

Alex and Katelyn need to watch more movies

More ratings per user → Better recommendations?

Adapt code to handle missing values (NaN or 0) better

Make a hybrid model of user-based & item-based clustering using some 
of the data we ignored: genres, tags, etc.

25

*



Thank you!

Moral of the Story: Don’t take good 
recommendations for granted!

https://github.com/stringkm/movie-matchmaker


