Collaborative Filtering for Movie Recommendations

Alex Riley Katelyn Stringer

Types of Recommendation Systems

- Content-based
- User-based
- Hybrid
- More sophisticated models...

Types of Recommendation Systems

- Content-basedUser-based
- Hybrid
- More sophisticated models...

User-Based Collaborative Filtering

- 1. Quantify similarities between users by comparing previous ratings
- 2. Predict ratings using a weighted combination of other ratings
 - -- Weights = similarity of users

movielens

20 Million movie ratings

- 1995 2015
- Users selected at random
- Must have \geq 20 ratings
- No identifying information

grouplens

UNIVERSITY OF MINNESOTA

https://movielens.org

The MovieLens Data Set

	userId	movield	rating	timestamp
20000258	138493	68954	4.5	1258126920
20000259	138493	69526	4.5	1259865108
20000260	138493	69644	3.0	1260209457
20000261	138493	70286	5.0	1258126944
20000262	138493	71619	2.5	1255811136

The MovieLens Data Set

Ratings are 0.5 - 5 stars

 0.5 star increments

Users are identified by ID number 2000025
Movie IDs match titles in sep. file 2000026
Other quantities available: 2000026
Tags, genre, time stamps

	userId	movield	rating	tin estam
20000258	138493	68954	4.5	125 126 220
20000259	138493	69526	4.5	1259 0 5108
20000260	138493	69644	3.0	1260/49457
20000261	138493	70286	5.0	125/126 44
20000262	138493	71619	2.5	12 58111 6

The MovieLens Data Set

tin estam movield rating userId Ratings are 0.5 - 5 stars 125 138493 68954 4.5 20000258 0.5 star increments \bigcirc <u>Users are identified by ID number</u> 20000259 138493 69526 4.5 1259 Movie IDs match titles in sep. file 20000260 138493 3.0 1260/ 69644 Other quantities available: 20000261 138493 70286 5.0 125/ Tags, genre, time stamps 0 71619 2.5 12 58111 20000262 138493

20 Million \rightarrow 100,000 ratings

120

126

\$20

Ø 5108

A 9457

944

16

Formatting the Data

Convert to matrix for analysis

User	Movie	Rating		Movie	50	60
25661	50	1		User		
32890	50	5	pandas.pivot_table	25661	1	NaN
50987	60	3		32890	5	2
32890	60	2		50987	NaN	3

Calculating Similarity

1. Pearson Correlation Coefficient

similarity(A, B) = $\frac{\sum_{i=1}^{n} (A_i - A)(B_i - B)}{\sqrt{\sum_{i=1}^{n} (A_i - \bar{A})^2 \sum_{i=1}^{n} (B_i - \bar{B})^2}}$

2. Cosine Similarity

 Accounts for "niceness" of user-- measures scatter around mean of ratings

Cons:

Pros:

Easy (pandas.corr)

- Overestimates similarity for very few overlaps between users
 - same rating for one movie gives sim=1

Calculating Similarity

- 1. Pearson Correlation Coefficient
- 2. Cosine Similarity

Pros:

- Boils down to direct matrix math
 - check with sklearn's pairwise_distances
- Weight factor [0,1] means no negative predictions

similarity(A, B) =
$$\frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Cons:

 Matrix multiplication with NaNs -> replace with 0s, depresses similarity

Result: Similarity Matrix

User	25661	32890	50987	60453
User				
25661	1	NaN	0.98	0.66
32890	NaN	1	-0.23	0.59
50987	0.98	-0.23	1	NaN
60453	0.66	0.59	NaN	1

Predicting Ratings

$$\operatorname{pred}_{A} = \frac{1}{\sum_{k \in R_{j}} \operatorname{sim}(A, k)} \sum_{k \in R_{j}} \operatorname{sim}(A, j) \operatorname{rating}_{k, j}$$

A = user

 ${\bf k}$ = index of other user

 $R_i = set of users who rated movie j$

User	25661	32890	50987	60453					*
User									
25661	1	NaN	0.98	0.66					
32890	NaN	1	-0.23	0.59					
50987	0.98	-0.23	1	raN	\rangle				
60453	0.66	0.59	NaN	Mo	50	60	89	103	973
				ser					
				25661	1	NaN / 0	3	5	2
				32890	5	2	NaN /0	3	1
				50987	NaN / (3	4	4	NaN / 0
				60453	5	1	4.5	3	2.5

Predicting Ratings

1*NaN + NaN*2 + 0.98*3 + 0.66*1

(NaN + NaN + 0.98 + 0.66)

= 3.34 for movie # 60 for user 25661

Measuring Performance

Split data into training (80%) & test (20%) sets

Movie	50	60	89	103	973
User					
25661	1	NaN / 0	3	5	2
32890	5	2	NaN /0	3	1
50987	NaN / 0	3	4	4	NaN / 0
60453	5	1	4.5	3	2.5

Measuring Performance: <u>Pearson</u>

Use the training data to predict the test ratings

MSE ≅ 10.8667

Actual Rating

Measuring Performance: Cosine

Use the training data to predict the test ratings

MSE ≅ 10.7631

Actual Rating

Top-k Filtering: Cosine

How many similar users should be considered when making recommendations?

The Ultimate Test...

*

Katelyn's Input

	title	rating
2	Illusionist, The (L'illusionniste) (2010)	5.0
3	Catch Me If You Can (2002)	5.0
5	Bridge of Spies (2015)	5.0
20	WALL-E (2008)	5.0
0	13 Going on 30 (2004)	4.5
22	The Man from U.N.C.L.E. (2015)	4.5
8	Jonah: A VeggieTales Movie (2002)	4.5
11	Ant-Man (2015)	4.5
14	Remember the Titans (2000)	4.0
19	The Age of Adaline (2015)	4.0
18	Chronicles of Narnia: The Lion, the Witch and	4.0
17	Little Miss Sunshine (2006)	4.0

16	Little Rascals, The (1994)	4.0
13	Lucky One, The (2012)	4.0
12	Rookie, The (1990)	4.0
7	Mr. Bean's Holiday (2007)	4.0
15	Batman: The Dark Knight Returns, Part 1 (2012)	3.5
25	Wedding Crashers (2005)	3.5
10	Hangover, The (2009)	3.0
9	Twilight Saga: New Moon, The (2009)	3.0
4	Talladega Nights: The Ballad of Ricky Bobby (2	3.0
23	Peanuts Movie, The (2015)	3.0
24	Baby's Day Out (1994)	3.0
21	Grease 2 (1982)	2.0
6	Sabrina (1954)	1.5
1	Without a Paddle (2004)	1.0

Katelyn's Results: Pearson Similarity

Recommended:

NOT Recommended:

Alex's Input

	title	rating
23	Santa Clause, The (1994)	5.0
21	Scooby-Doo (2002)	5.0
19	Looney, Looney, Looney Bugs Bunny Movie, The (5.0
17	Meet the Robinsons (2007)	5.0
14	The Imitation Game (2014)	5.0
7	Phantom of the Opera, The (2004)	5.0
13	Bruce Almighty (2003)	4.5
10	Pink Panther Strikes Again, The (1976)	4.5
25	Home Alone 3 (1997)	4.5
2	Giver, The (2014)	4.0
1	Cloudy with a Chance of Meatballs (2009)	4.0
4	Bill Cosby, Himself (1983)	4.0

Legend of Zorro, The (2005)	3.5
Jesus Christ Superstar (1973)	3.5
The Theory of Everything (2014)	3.5
Doctor Dolittle (1967)	3.5
Legend of Zorro, The (2005)	3.0
Shutter Island (2010)	3.0
Parent Trap, The (1961)	3.0
American Sniper (2014)	2.5
The Island (2008)	2.0
Snow White and the Huntsman (2012)	2.0
Fast Five (Fast and the Furious 5, The) (2011)	0.5
Resident Evil: Apocalypse (2004)	0.5
Nightmare on Elm Street 2: Freddy's Revenge, A	0.5
Taken 3 (2015)	0.5

Alex's Results: Cosine Similarity

Recommended:

NOT Recommended:

MILLIVRES MULTIMEDIA PRESENTS

How Can We Make it Better?

Alex and Katelyn need to watch more movies

More ratings per user \rightarrow Better recommendations?

Adapt code to handle missing values (NaN or 0) better

Make a hybrid model of user-based & item-based clustering using some of the data we ignored: genres, tags, etc.

Thank you!

Moral of the Story: Don't take good recommendations for granted!

https://github.com/stringkm/movie-matchmaker