NETFLIX

EM Mixture Model

Xin Jin
Xuan Guo

Data Exploration

- Original data has $\mathbf{1 0 0 4 9 8 2 7 7}$ rows and $\mathbf{3}$ columns(Time, Customer Id and Ratings);
- We focus on the first data set due to computation limit;
- The dataset includes 4499 movies and $\mathbf{4 7 0 7 5 8}$ customers.
- In the form of matrix, there exists more than $\mathbf{9 8 \%}$ missing values.

Data Exploration

The Distribution of Ratings

The Distribution of Reviews for Movies

Right-skewed

The Distribution of Reviews for Users

Right-skewed

Data Cleaning

Original dataset			Cleaned dataset			Matrix Form		
						Cust_Id \(
)	1	2						
1:			Cust_Id	Movie_ld	Rating	Movie_Id		
1488844	3	2005-09-06	1488844	1	3	1488844	3	.
822109	5	2005-05-13	822109	1	5	822109	5	.
885013	4	2005-10-19	885013	1	4	885013	4	.

Model Assumptions

Quirky(pi):

In quirky mode, rater i has a private rating distribution with probability mass function $q(x \mid a i)$ that applies to every movie regardless of its intrinsic merit.

Consensus(1-pi):

In consensus mode, rater i rates movie j according to a distribution with probability mass function $c(x \mid \beta j)$ shared with all other raters in consensus mode.

$$
\begin{aligned}
& q\left(k \mid \alpha_{i}\right)=\binom{d-1}{k-1} * \alpha_{i}^{k-1} *\left(1-\alpha_{i}\right)^{d-k} \quad L(\theta)=\prod_{i} \prod_{j \in M_{i}}\left[\pi_{i} q\left(x_{i j} \mid \alpha_{i}\right)+\left(1-\pi_{i}\right) c\left(x_{i j} \mid \beta_{j}\right)\right] \\
& c\left(k \mid \beta_{j}\right)=\binom{d-1}{k-1} * \beta_{j}^{k-1} *\left(1-\beta_{j}\right)^{d-k}
\end{aligned}
$$

EM Algo Implementation for (pi, alpha, beta)

$$
\begin{aligned}
& \ln \left(\sum_{i=1}^{m} \gamma_{i}\right) \geq \sum_{i=1}^{m} \frac{\gamma_{i}^{n}}{\sum_{j=1}^{n} \gamma_{j}^{n}} \ln \left(\frac{\sum_{j=1}^{m} \gamma_{\gamma^{n}}^{n}}{\gamma_{i}^{n}} r_{i}\right) \text {. } \\
& \ln L \theta) \geq \sum_{i}\left[\ln \pi_{i} \sum_{j=W_{i}} w_{i}^{2}+\ln \left(1-\pi_{i}\right) \sum_{j \in N_{i}}\left(1-w_{i j}^{p_{i}^{2}}\right]\right.
\end{aligned}
$$

Updates:

$$
\pi_{i}^{n+1}=\frac{\sum_{j_{x_{i j}>0}} w_{i j}^{n}}{m_{i}}
$$

$$
\alpha_{i}^{n+1}=\frac{\sum_{j_{x_{i j}>0}} w_{i j}^{n} *\left(x_{i j}-1\right)}{(d-1) * \sum_{j_{x_{i j}>0}} w_{i j}^{n}}
$$

$\beta_{j}^{n+1}=\frac{\sum_{i}\left(1-w_{i j}^{n}\right) *\left(x_{i j}-1\right)}{(d-1) * \sum_{i}\left(1-w_{i j}^{n}\right)}$

Implementation Results

EM Convergence:


```
c = 0
while c<20:
w = get_w(pi,alpha,beta,x,w)
pi = get_pi(pi,w)
alpha = get_alpha(x,w)
beta = get_beta(x,w)
like = loglikeli(pi,alpha,beta,x)
if ((l[-1]-like)/l[-1])<0.0005:
        break
    l.append(like)
    c += 1
```


Final Parameters

Final Distribution of Pi

Final Distribution of Alpha

Final Distribution of Beta

Identify Unusual Users

Remove users who have more probability to be in the quirky mode.

The threshold we choose to identify unusual users is $\mathrm{pi}>0.6$.

Remove 7266 unusual users.

Collaborative Filtering

User-based

Item-based

$$
L(\theta)=\prod_{i} \prod_{j \in M_{i}}\left[\pi_{i} q\left(x_{i j} \mid \alpha_{i}\right)+\left(1-\pi_{i}\right) c\left(x_{i j} \mid \beta_{j}\right)\right],
$$

EM Mixture Model learns both user-based info and iterm-based info.

Collaborative Filtering

Similarity

Cust_Id Movie_Id	1	2	3	4
1488844	3	1	2	3
822109	5	3	2	\cdot
885013	4	.	.	3

Pearson-Correlation Similarity

$$
\operatorname{simil}(x, y)=\frac{\sum_{i \in I_{x y}}\left(r_{x, i}-\overline{r_{x}}\right)\left(r_{y, i}-\overline{r_{y}}\right)}{\sqrt{\sum_{i \in I_{x y}}\left(r_{x, i}-\overline{r_{x}}\right)^{2}} \sqrt{\sum_{i \in I_{x y}}\left(r_{y, i}-\overline{r_{y}}\right)^{2}}}
$$

Cosine-Based Similarity

$$
\operatorname{simil}(x, y)=\cos (\vec{x}, \vec{y})=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \times\|\vec{y}\|}=\frac{\sum_{i \in I_{x y}} r_{x, i} r_{y, i}}{\sqrt{\sum_{i \in I_{x}} r_{x, i}^{2}} \sqrt{\sum_{i \in I_{y}} r_{y, i}^{2}}}
$$

SVD Algo

The prediction $\hat{r}_{u i}$ is set as:

$$
\hat{r}_{u i}=\mu+b_{u}+b_{i}+q_{i}^{T} p_{u}
$$

Optimization Goal: Min $\sum_{r_{u} \in R_{\text {ruan }}}\left(r_{u i}-\hat{r}_{u i}\right)^{2}+\lambda\left(b_{i}^{2}+b_{u}^{2}+\left\|q_{i}\right\|^{2}+\left\|p_{u}\right\|^{2}\right)$

Gradient Descent

$$
\begin{aligned}
b_{u} & \leftarrow b_{u}+\gamma\left(e_{u i}-\lambda b_{u}\right) \\
b_{i} & \leftarrow b_{i}+\gamma\left(e_{u i}-\lambda b_{i}\right) \\
p_{u} & \leftarrow p_{u}+\gamma\left(e_{u i} \cdot q_{i}-\lambda p_{u}\right) \quad: e_{u i}=r_{u i}-\hat{r}_{u i} . \\
q_{i} & \leftarrow q_{i}+\gamma\left(e_{u i} \cdot p_{u}-\lambda q_{i}\right)
\end{aligned}
$$

Comparison after Unusual User Identification

MAE	RMSE
0.73327766	0.93505776
0.73297882	0.93468037
0.73231072	0.93444277
0.73095701	0.93125733
0.73001626	0.92982399

MAE	RMSE
0.72625528	0.92592605
0.7286607	0.92794139
0.72662997	0.9263454
0.72764525	0.92663783
0.72870872	0.9272608

	MAE	RMSE
SVD(Before)	0.732	0.933
SVD(After)	0.727	0.926

Future Work

- Normalize Ratings
- Predict using EM mixture Model
- Use the time column
- Improve the data structure to increase computation speed

Thank you!

