Imbalanced Classification Problem

A Credit Card Fraud Detection example

The Dataset

- Contains 284806 credit card transactions occurred in two days
- Original features transformed to Principal Components
- Amount Transaction Amount
- Time seconds elapsed after the first transaction

The Dataset

Proportion of Variance

Class Imbalance

print(" No. of Genuine transactions = " + str(data['Class'].value_counts().iloc[0]))
print(" No. of Fraudulent transactions = " + str(data['Class'].value_counts().iloc[1]))

No. of Genuine transactions = 284315 No. of Fraudulent transactions = 492

plt.figure(figsize = (8,5))
sns.countplot(data['Class'])
plt.xlabel("Class")
plt.ylabel("Frequency")
plt.show()

Approaching Imbalanced Classification

Predictive Accuracy – not appropriate

1. Collect more data?

Might expose a different and balanced perspective

2. Performance Metrics

3. Resampling – to generate balanced and unbiased training sets

Performance Metrics

	Pred. Negative	Pred. Positive
Actual Negative	TN	FP
Actual Positive	FN	ТР

Table : Confusion Matrix

$$Sensitivity(Recall) = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

Sensitivity – Predictive Performance for Minority Class

Specificity - Predictive Performance for Majority Class

Performance Metrics

AU - ROC Curve : Summarizes performance over a range of tradeoffs between TP and FP

Fitting Logistic Regression to Original Data

Sensitivity/Recall	Specificity	
0.643	.999	

Resampling Techniques

1. Oversampling I. SMOTE II. ADASYN

2. Random Undersampling

3. Ensemble Methods

I. Balanced Bagging II. Easy Ensemble III. Balanced Cascade

The Wrong Way to Oversample

The Right Way

SMOTE

Forces the decision region of minority class to become more general and considers areas with predominant majority examples.

Visualization of SMOTE

ADASYN

- Assigns a weight to different minority class examples and generates more synthetic data for examples that are hard to learn.
- In essence, shifts the decision boundary towards more difficult minority class examples.

Steps for ADASYN

- 1. Calculate the no. of Synthetic examples to be generated based on desired balance level.
- 2. Find k-NN for each minority class example
- 3. Calculate the fraction of neighbors belonging to majority class.
- 4. Use the fraction to calculate the number of synthetic examples to be generated
- 5. Generate new samples by the process used by SMOTE.

Random Undersampling

Randomly select majority class examples to create a 50/50 class ratio

Downside:

Ignores potentially useful majority class data and suffers from poor performance

Sensitivity/Recall	Specificity	
0.94	0.88	

Ensemble Methods

✤ Also known as Informed Undersampling

Combines several classifiers built using different samples from majority class.

Balanced Bagging

Based on:

- 1. Bootstrap plenty of diverse observations
- 2. Aggregation helps reduce variance

Combines results obtained from different bootstrapped samples for both classes.

Sensitivity/Recall	Specificity	
0.94	0.93	

Easy Ensemble

AdaBoost : Combines multiple weak classifiers into a single strong classifier.

Initialize the weight for each data point.

For iteration m = 1, ..., M

Fit weak classifiers to the dataset and select one with lowest classification error.

Calculate the weight for m-th weak classifier

$$\theta_m = \frac{1}{2} ln(\frac{1-\epsilon_m}{\epsilon_m}).$$

Update the weight for each data point as

$$w_{m+1}(x_i, y_i) = \frac{w_m(x_i, y_i)exp[-\theta_m y_i f_m(x_i)]}{Z_m},$$

Get the final prediction by summing up weighted prediction of each classifier.

$$F(x) = sign(\sum_{m=1}^{M} \theta_m f_m(x)),$$

 $\mathbf{M} \mid \mathbf{TEXAS}_{\mathbf{U} \ \mathbf{N} \ \mathbf{I} \ \mathbf{V} \ \mathbf{E} \ \mathbf{R}} \mathbf{A} \mathbf{A} \mathbf{M}_{\mathbf{N}}$

Easy Ensemble

The EasyEnsemble algorithm.

- 1: {Input: A set of minority class examples \mathcal{P} , a set of majority class examples \mathcal{N} , $|\mathcal{P}| < |\mathcal{N}|$, the number of subsets T to sample from \mathcal{N} , and s_i , the number of iterations to train an AdaBoost ensemble H_i }
- 2: $i \Leftarrow 0$
- 3: repeat
- 4: $i \Leftarrow i + 1$
- 5: Randomly sample a subset \mathcal{N}_i from $\mathcal{N}, |\mathcal{N}_i| = |\mathcal{P}|$.
- 6: Learn H_i using \mathcal{P} and \mathcal{N}_i . H_i is an AdaBoost ensemble with s_i weak classifiers $h_{i,j}$ and corresponding weights $\alpha_{i,j}$. The ensemble's threshold is θ_i , i.e.

$$H_i(x) = \operatorname{sgn}\left(\sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \theta_i\right).$$

- 7: until i = T
- 8: Output: An ensemble:

$$H(x) = \operatorname{sgn}\left(\sum_{i=1}^{T} \sum_{j=1}^{s_i} \alpha_{i,j} h_{i,j}(x) - \sum_{i=1}^{T} \theta_i\right).$$

Balanced Cascade

Easy Ensemble : Unsupervised Strategy since it uses independent random sampling with replacement.

Balanced Cascades :

Drops correctly classified majority examples from further sampling as the information is already contained in an AdaBoost Ensemble.

Results based on Logistic Regression

		Oversampling Ratio	Sensitivity/Recall	Specificity	AUC
Original			0.64	0.99	0.96
Undersampling			0.94	0.88	0.9689
Oversampling	SMOTE	0.25	0.90	0.99	0.9970
	SMOTE	0.5	0.91	0.99	0.9885
	SMOTE	1	0.94	0.97	0.9898
Oversampling	ADASYN	0.25	0.94	0.97	0.9900
	ADASYN	0.5	0.96	0.95	0.9907
	ADASYN	1	0.97	0.90	0.9911
Ensemble	BalancedBagging		0.94	0.93	0.9729
	EasyEnsemble		0.91	0.97	0.9781

