Handling mislabeled training data for classification

Shubham, Siddharth

What is mislabeled data

- Data for supervised learning consists of (x1, x2, x3, ... y)
- Some output labels y are incorrect.
- Example: Cat classification

Reasons for mislabeling

- Subjectivity Information for labeling different from data attributes.
- Data-entry error
- Inadequate information Hard to perform tests to guarantee 100% diagnosis

Methods for Handling Mislabeling

- Noise Elimination (Filtering data)
- Noise Tolerance (Robust algorithms, handling overfitting)

We will focus on Noise Elimination

- Analyze and include outliers as exceptions.
- Noisy examples do not influence hypothesis construction.

Gamberger D, Lavrac N, Dzeroski S (2000) Noise detection and elimination in data proprocessing: Experiments in medical do- mains. Appl Artif Intell 14(2):205–223

Ideas from the following papers

- C. E Brodley and M. A. Friedl (1999) "Identifying Mislabeled Training Data"
- CG Northcutt, T Wu, IL Chuang (2017) "Learning with Confident Examples: Rank Pruning for Robust Classification with Noisy Labels"

Motivation

- Removing outliers in regression analysis.
- An outlier is a case (an instance) that does not follow the same model as the rest of the data and appears as though it comes from a different probability distribution.

Main idea

- Using classifiers as filters.

How to filter

- Mark every instance in the training set as mislabeled (1) or not (0).
- Filter out the mislabeled instances.

Assumption:

- Errors are independent of model being fit.

Filtering by Cross-Validation

- Divide training data into n folds
- Train a "filtering model" on (n-1) folds, and add a 'mislabeled' class attribute to the examples in the nth fold.
- Repeat for all possible folds.

Test Part

Test Part

Test Part

Test Part

Types of Filtering

- Single Algorithm Filter
 - Filtering is done by one algorithm
 - > Instance is marked as mislabeled if this algorithm tagged it as mislabeled
- Majority Vote Filter
 - > Filtering is done by multiple algorithms
 - > Instance is marked as mislabeled if more than half of the algorithms tagged it as mislabeled
- Consensus Filter
 - > Filtering is done by multiple algorithms
 - > Instance is marked as mislabeled if all of the algorithms tagged it as mislabeled

Types of Detection Errors

- E1 correct instance is tagged as mislabeled and subsequently discarded
- E2 mislabeled instance is tagged as correctly labeled

Figure: Types of Detection Errors

Probability of each error

1. Majority Filter

$$P(E1) = \sum_{j>m/2}^{j=m} P(E1_i)^j (1 - P(E1_i))^{m-j} \begin{pmatrix} m \\ j \end{pmatrix}$$
$$P(E2) = \sum_{j>m/2}^{j=m} P(E2_i)^j (1 - P(E2_i))^{m-j} \begin{pmatrix} m \\ j \end{pmatrix}$$

Here,

 $P(E1_i) = Probability that classifier i makes error E1$ $<math>P(E2_i) = Probability that classifier i makes error E2$ m = number of base level classifiers

Probability of each error

2. Consensus Filter

$$P(E1) = \prod_{i=1}^{m} P(E1_i)$$

$$P(E2) = 1 - \prod_{i=1}^{m} (1 - P(E2_i))$$

Here,

P(E1_i) = Probability that classifier i makes error E1 P(E2_i) = Probability that classifier i makes error E2 m = number of base level classifiers

Empirical analysis

- MNIST Dataset
 - Training dataset = 10000 images
 - Test dataset = 1000 images
- Model used for Filtering
 - Single Algorithm Filter(SF) = Logistic Regression
 - Majority Filter(MF) = Logistic Regression, Random Forest Classifier, MLP Classifier
 - Consensus Filter(CF) = Logistic Regression, Random Forest Classifier, MLP Classifier
- Final Classifier Model = Logistic Regression
- Noise Level Used = [0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%]

Empirical analysis

Comparison of different types of filters with increasing noise in training data

Empirical analysis

Noise Level	Single P(E ₁)	e Filter P(E ₂)	Majorit P(E ₁)	y Filter P(E ₂)	Consens P(E ₁)	sus Filter P(E ₂)
5	0.17	0.10	0.20	0.09	0.06	0.14
10	0.18	0.10	0.20	0.08	0.07	0.14
15	0.20	0.09	0.22	0.08	0.08	0.14
20	0.21	0.10	0.24	0.08	0.08	0.15
25	0.22	0.10	0.27	0.07	0.09	0.16
30	0.24	0.10	0.27	0.07	0.10	0.17
35	0.27	0.10	0.30	0.08	0.10	0.17
40	0.30	0.10	0.36	0.07	0.11	0.17

Rankpruning

- Paper published in (UAI) 2017.
- Approach for solving *P̃Ñ* learning problem
- RP can estimate the noise rates.

http://auai.org/uai2017/proceedings/papers/35.pdf

Formulating *PÑ* learning

- Given n observed training examples $x \in \mathcal{R}^D$

Observed corrupted labels: $s \in \{0, 1\}$ Unobserved true labels: $y \in \{0, 1\}$

Unfortunately, using (x,s) pairs, we estimate $g, \ x o s$ $g(x) = P(\hat{s} = 1|x)$

Observed noisy positive and negative sets $ilde{P} = \{x | s = 1\}, ilde{N} = \{x | s = 0\}$

We want to estimate $f \ x
ightarrow y$

Main Idea

- Prune the observed (x, s) pairs to obtain confident (x, s) pairs that are close to Unobserved $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$

VAR	CONDITIONAL	DESCRIPTION
ρ_0	P(s=1 y=0)	Fraction of N examples mislabeled as positive
ρ_1	P(s=0 y=1)	Fraction of P examples mislabeled as negative
π_0	P(y=1 s=0)	Fraction of mislabeled examples in \tilde{N}
π_1	P(y=0 s=1)	Fraction of mislabeled examples in \tilde{P}

$$\rho_1 + \rho_0 < 1$$

$$p_{s1} = P(s = 1) \quad \pi_1 = P(y = 0 | s = 1) = \frac{\rho_0(1 - p_{y1})}{p_{s1}}$$
$$p_{y1} = P(y = 1) \quad \pi_0 = P(y = 1 | s = 0) = \frac{\rho_1 p_{y1}}{(1 - p_{s1})}$$

Estimating thresholds for pruning

$$\hat{\rho}_1^{conf} := \frac{|\tilde{N}_{y=1}|}{|\tilde{N}_{y=1}| + |\tilde{P}_{y=1}|}, \hat{\rho}_0^{conf} := \frac{|\tilde{P}_{y=0}|}{|\tilde{P}_{y=0}| + |\tilde{N}_{y=0}|}$$

$$\begin{cases} \tilde{P}_{y=1} = \{x \in \tilde{P} \mid g(x) \ge LB_{y=1}\} \\ \tilde{N}_{y=1} = \{x \in \tilde{N} \mid g(x) \ge LB_{y=1}\} \\ \tilde{P}_{y=0} = \{x \in \tilde{P} \mid g(x) \le UB_{y=0}\} \\ \tilde{N}_{y=0} = \{x \in \tilde{N} \mid g(x) \le UB_{y=0}\} \end{cases}$$

$$\begin{cases} LB_{y=1} := P(\hat{s} = 1 \mid s = 1) = E_{x \in \tilde{P}}[g(x)] \\ UB_{y=0} := P(\hat{s} = 1 \mid s = 0) = E_{x \in \tilde{N}}[g(x)] \end{cases}$$

Pruned training data

- $\tilde{P}_{conf} = \{ \text{remove } \hat{\pi}_1 | \tilde{P} | \text{ examples from } \tilde{P} \text{ with least } g(x) \}$
- $\tilde{N}_{conf} = \{ \text{remove } \hat{\pi}_0 | \tilde{N} | \text{ examples from } \tilde{N} \text{ with highest } g(x) \}$
- Fit classifier on $X_{conf} = \tilde{P}_{conf} \cup \tilde{N}_{conf}$ (Perform class-conditional reweighting of loss function if required)

Results - Accuracy Comparison, N = 1500 (+500, -1000)

multivariate_normal(mean=[5,5], cov=[[1.5,0.3],[1.3,4]], size=500) multivariate_normal(mean=[2,2], cov=[[10,-1.5],[-1.5,5]], size=1000)

Noise Rates (rho0, rho1)	Baseline (LR)	Rank Pruning	Rank Pruning (Noise rates given)
0, 0	0.845	0.844	0.845
0.2, 0.6	0.666	0.827	0.832
0.4, 0.4	0.828	0.797	0.840
0.6, 0.2	0.338	0.778	0.834

Ongoing work

- Build a simple python wrapper that supports the filtering techniques we've analyzed.

Thank you! Questions?