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What is mislabeled data

- Data for supervised learning consists of (x1, x2, x3, … y)
- Some output labels y are incorrect.
- Example: Cat classification



Reasons for mislabeling
- Subjectivity - Information for labeling different from data attributes.
- Data-entry error
- Inadequate information - Hard to perform tests to guarantee 100% diagnosis



Methods for Handling Mislabeling
- Noise Elimination (Filtering data)
- Noise Tolerance (Robust algorithms, handling overfitting)

We will focus on Noise Elimination

- Analyze and include outliers as exceptions.
- Noisy examples do not influence hypothesis construction.

Gamberger D, Lavrac N, Dzeroski S (2000) Noise detection and elimination in 
data proprocessing: Experiments in medical do- mains. Appl Artif Intell 
14(2):205–223



Ideas from the following papers
- C. E Brodley and M. A. Friedl (1999) "Identifying Mislabeled Training Data"
- CG Northcutt, T Wu, IL Chuang (2017) “Learning with Confident Examples: 

Rank Pruning for Robust Classification with Noisy Labels”



Motivation
- Removing outliers in regression analysis.
- An outlier is a case (an instance) that does not follow the same model as the 

rest of the data and appears as though it comes from a different probability 
distribution.



Main idea
- Using classifiers as filters.



How to filter
- Mark every instance in the training set as mislabeled (1) or not (0).
- Filter out the mislabeled instances.

Assumption:

- Errors are independent of model being fit.



Filtering by Cross-Validation
- Divide training data into n folds
- Train a “filtering model” on (n-1) folds, and add a ‘mislabeled’ class attribute to 

the examples in the nth fold.
- Repeat for all possible folds.



Filtering Example

X1, Y1
X2, Y2
X3, Y3
X4, Y4
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X8, Y8
X9, Y9            
X10, Y10        

Test Part

Training Part

Correctly Labeled

Mislabeled
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Types of Filtering
❖ Single Algorithm Filter

➢ Filtering is done by one algorithm
➢ Instance is marked as mislabeled if this algorithm tagged it as mislabeled

❖ Majority Vote Filter
➢ Filtering is done by multiple algorithms
➢ Instance is marked as mislabeled if more than half of the algorithms tagged it as mislabeled

❖ Consensus Filter
➢ Filtering is done by multiple algorithms
➢ Instance is marked as mislabeled if all of the algorithms tagged it as mislabeled



Types of Detection Errors
❖ E1 - correct instance is tagged as mislabeled and subsequently discarded
❖ E2 - mislabeled instance is tagged as correctly labeled

Figure: Types of Detection Errors



Probability of each error
1. Majority Filter

Here,
P(E1i) = Probability that classifier i makes error E1
P(E2i) = Probability that classifier i makes error E2
m        = number of base level classifiers



Probability of each error
2.   Consensus Filter

Here,
P(E1i) = Probability that classifier i makes error E1
P(E2i) = Probability that classifier i makes error E2
m        = number of base level classifiers



Empirical analysis
❖ MNIST Dataset

➢ Training dataset = 10000 images
➢ Test dataset = 1000 images

❖ Model used for Filtering
➢ Single Algorithm Filter(SF) = Logistic Regression
➢ Majority Filter(MF) = Logistic Regression, Random Forest Classifier, MLP Classifier
➢ Consensus Filter(CF) = Logistic Regression, Random Forest Classifier, MLP Classifier

❖ Final Classifier Model = Logistic Regression
❖ Noise Level Used = [0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%]



Empirical analysis
❖ Comparison of different types of filters with increasing noise in training data



Empirical analysis
Noise 
Level

Single Filter
    P(E1)             P(E2)

Majority Filter
    P(E1)             P(E2)

Consensus Filter
    P(E1)             P(E2)

5 0.17 0.10 0.20 0.09 0.06 0.14

10 0.18 0.10 0.20 0.08 0.07 0.14

15 0.20 0.09 0.22 0.08 0.08 0.14

20 0.21 0.10 0.24 0.08 0.08 0.15

25 0.22 0.10 0.27 0.07 0.09 0.16

30 0.24 0.10 0.27 0.07 0.10 0.17

35 0.27 0.10 0.30 0.08 0.10 0.17

40 0.30 0.10 0.36 0.07 0.11 0.17



Rankpruning

- Paper published in (UAI) 2017.
- Approach for solving       learning problem
- RP can estimate the noise rates.

http://auai.org/uai2017/proceedings/papers/35.pdf



Formulating       learning
- Given n observed training examples 

Unobserved true labels:Observed corrupted labels:

Unfortunately, using            pairs, we estimate g, 

We want to estimate 

Observed noisy positive and negative sets



Main Idea
- Prune the observed (x, s) pairs to obtain confident (x, s) pairs that are close to 

Unobserved 



Estimating thresholds for pruning



Pruned training data

-        = {remove        examples from    with least       }
-        = {remove        examples from     with highest      }
- Fit classifier on                                                                                       

(Perform class-conditional reweighting of loss function if required)



Results - Accuracy Comparison, N = 1500 (+500, -1000)

multivariate_normal(mean=[5,5], cov=[[1.5,0.3],[1.3,4]], size=500)
multivariate_normal(mean=[2,2], cov=[[10,-1.5],[-1.5,5]], size=1000)

Noise Rates
(rho0, rho1)

Baseline (LR) Rank Pruning Rank Pruning 
(Noise rates given)

0, 0 0.845 0.844 0.845

0.2, 0.6 0.666 0.827 0.832

0.4, 0.4 0.828 0.797 0.840

0.6, 0.2 0.338 0.778 0.834



Ongoing work

- Build a simple python wrapper that supports the filtering 
techniques we’ve analyzed.

Thank you! Questions? 


