Poverty Prediction

Shao Hung Lin Chendøng Cai

Background

Competition platform: DrivenData

Data source: World Bank

Purpose of the project: build a model to accurately predict the poverty status using various survey data

Data Summary (household)

Household data: 8203 observations, 346 features (4 numerical features)

	wBXbHZmp	SIDKnCuu	AIDbXTIZ	•••	poor
id					
80389	JhtDR	GUusz	aQelm		True
9370	JhtDR	GUusz	ceclq		True
39883	JhtDR	GUusz	aQelm		False
18327	JhtDR	alLXR	ceclq		True
88416	JhtDR	GUusz	ceclq		True

Data Summary (individual)

Individual data: 37560 observations, 44 features (1 numerical feature)

		HeUgMnzF	CaukPfUC	xqUooaNJ	•••	poor
id	iid					
80389	1	XJsPz	mOlYV	dSJoN	•••	True
	2	XJsPz	mOlYV	JTCKs		True
	3	TRFel	mOlYV	JTCKs		True
	4	XJsPz	уАуАе	JTCKs		True
9370	1	XJsPz	mOlYV	JTCKs		True

Performance metric: mean log loss

MeanLogLoss =
$$-\frac{1}{N}\sum_{n=1}^{N} [y_n \log \widehat{y_n} + (1 - y_n) \log(1 - \widehat{y_n})]$$

id	Poor predicted probability
418	0.32
41249	0.28
16205	0.58
97051	0.36
67756	0.63

		ata P	repro		_	Missing counts	Missing percentage
			i opi o	, county	id	0	0.0%
					HeUgMnzF	0	0.0%
					CaukPfUC	0	0.0%
_ r	o alina with	missing			MzEtIdUF	0	0.0%
	Jealing with		j values		gtnNTNam	0	0.0%
					SWoXNmPc	0	0.0%
					eXbOkwhl	0	0.0%
					OdXpbPGJ	6268	16.69%
	Missing	counts Missi	ng percentage		XONDGWjH	0	0.0%
		6268	16 60%		KsFoQcUV	0	0.0%
	Ouxpbras	0200	10.0370		qYRZCuJD	0	0.0%
					FPQrjGnS	0	0.0%
					hOamrctW	0	0.0%
					XacGrSou	0	0.0%
/ /					UsmeXdIS	0	0.0%
		Count	Percentage		igHwZsYz	0	0.0%
			Fercentage	-	cxWuAOZv	0	0.0%
		4 29436	78.37%		AQpdiRUz	0	0.0%
\mathbf{N}					AoLwmIEH	0	0.0%
					nLUXHpZr	0	0.0%
					CRLISiFu	0	0.0%
					iYpOAiPW	0	0.0%

Data Preprocessing

One-hot encoding for categorical features

	A	В	С	D	E	F	G	Н	I
1 Original data:			One	Dne-hot encoding format:					
2	id	Color		id	White	Red	Black	Purple	Gold
3	1	White		1	1	0	0	0	0
4	2	Red		2	0	1	0	0	0
5	3	Black		3	0	0	1	0	0
6	4	Purple		4	0	0	0	1	0
7	5	Gold		5	0	0	0	0	1
8									
0									

Data Preprocessing

Merge household data with individual data

id	iid	CaukPfUC_kzSFB	CaukPfUC_mOIYV	CaukPfUC_yAyAe	MzEtIdUF_FRcdT	MzEtIdUF_UFoKR	MzEtIdUF_axSTs
14	2	0	1	0	0	0	1
14	1	0	1	0	0	1	0
18	3	0	1	0	0	0	1
18	1	1	0	0	0	0	1
18	2	0	1	0	0	0	1

Individual data

Household data

id wBXbHZmp_DkQlr wBXbHZmp_JhtDR SIDKnCuu_GUusz SIDKnCuu_alLXR KAJOWiiw_BlZns KAJOWiiw_TuovO KAJOWiiw_rqUAG

Merge

Logistic Regression

Sigmoid Function:
g(z) = ¹/_{1+e^{-z}}

Derivative of Sigmoid Function: g'(z) = g(z)(1 - g(z))

Logistic Regression

> In logistic regression, we define:

$$h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

$$\begin{cases} P(y=1 \mid x; \theta) = h_{\theta}(x) \\ P(y=0 \mid x; \theta) = 1 - h_{\theta}(x) \end{cases}$$

$$\Rightarrow P(y \mid x; \theta) = h_{\theta}(x)^{y} (1 - h_{\theta}(x))^{1-y}$$

Logistic Regression

> The likelihood of the parameters is,

$$= L(\theta) = P(\hat{y} \mid x; \theta) = \prod_{i=1}^{m} h_{\theta}(x^{i})^{y(i)} (1 - h_{\theta}(x^{i}))^{1-y(i)}$$

> Maximize the log likelihood,

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{m} y^i \log h(x^i) + (1 - y^i) \log(1 - h(x^i))$$

Use gradient ascent to maximize log-likelihood

> Calculate the partial derivative:

$$\frac{\partial \ell(\theta)}{\partial \theta_j} = (y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)}) \frac{\partial}{\partial \theta_j} g(\theta^T x)$$

$$= (y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)}) g(\theta^T x) (1 - g(\theta^T x)) \frac{\partial}{\partial \theta_j} \theta^T x$$

$$= (y(1 - g(\theta^T x)) - (1 - y) g(\theta^T x)) x_j$$

$$= (y - h_{\theta}(x)) x_j$$

$$\Rightarrow Updating Rule: \theta_j := \theta_j + \alpha \sum_{i=1}^m (y^i - h_\theta(x^i)) x_j^i$$

Realize Logistic Regression in Python

Gradient Descent converges much faster with feature scaling than without it.

contour of the cost function: 'oval shaped'

contour of the cost function: 'circle shaped'

×

Before input the data into model, we need to standardize the data first.

$$z_{ij} = \frac{x_{ij} - \overline{x_j}}{s_j}$$

- x_{ij} is j^{th} data point in feature *i*
- $\overline{x_i}$ is the sample mean
- *s_i is the standard deviation*

Experiments: 0.0003 learning rate, 200 iterations

Experiments: 0.0001 learning rate, 200 iterations

Results and comparison

	Our model	LogisticRegression in scikit- learn
Training Log Loss	0.1903	0.1901
Test Log Loss	0.3725	0.3687

Optimize the model by introducing Regularization

Minimize the cost function using Newton's method

Hessian matrix

$$\nabla_{\theta} J = \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)} \\ \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)} + \frac{\lambda}{m} \theta_{1} \\ \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{2}^{(i)} + \frac{\lambda}{m} \theta_{2} \\ \vdots \\ \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{n}^{(i)} + \frac{\lambda}{m} \theta_{n} \end{bmatrix}$$
 Gradient
$$H = \frac{1}{m} \left[\sum_{i=1}^{m} h_{\theta}(x^{(i)}) (1 - h_{\theta}(x^{(i)})) x^{(i)} (x^{(i)})^{T} \right] + \frac{\lambda}{m} \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{bmatrix}$$

Updating Rule: $\theta^{(t+1)} = \theta^t - H^{-1} \nabla_{\theta} J$

Results of model with regularization

Comparison of regularized and non-regularized model

From the experiment we can see that the regularized model outperforms the non-regularized logistic regression.