
Poverty Prediction
Shao Hung Lin

Chendong Cai

Background

 Competition platform: DrivenData

 Data source: World Bank

 Purpose of the project: build a model to accurately predict the

poverty status using various survey data

Data Summary (household)

 Household data: 8203 observations, 346 features (4 numerical features)

Data Summary (individual)

 Individual data: 37560 observations, 44 features (1 numerical feature)

Performance metric: mean log loss

MeanLogLoss = -
1

𝑁
 𝑛=1
𝑁 [𝑦𝑛 log 𝑦𝑛 + (1 − 𝑦𝑛) log(1 − 𝑦𝑛)]

id Poor predicted probability

418 0.32

41249 0.28

16205 0.58

97051 0.36

67756 0.63

Workflow

Deal with

missing

value

On-hot

encoding on

categorical

features

Merge
household data
with individual

data

Build logistic
regression with

gradient descent
in Python

Build logistic
regression in scikit-

learn with
regularization and
parameter tuning

Results

evaluation/

comparison

Data Preprocessing

 Dealing with missing values

Data Preprocessing

 One-hot encoding for categorical features

Data Preprocessing

Merge household data with individual data

Individual data

Household data
Merge

Logistic Regression

 Sigmoid Function:

• 𝑔 𝑧 =
1

1+𝑒−𝑧

 Derivative of Sigmoid Function:

• 𝑔′ 𝑧 = 𝑔 𝑧 1 − 𝑔 𝑧

Logistic Regression

 In logistic regression, we define:

ℎ𝜃 𝑥 = 𝑔 𝜃𝑇𝑥 =
1

1 + 𝑒−𝜃
𝑇𝑥

P(y=1 | x ; 𝜃) = ℎ𝜃 𝑥

P(y=0 | x ; 𝜃) = 1 − ℎ𝜃 𝑥

⟹ P(y | x ; 𝜃) = ℎ𝜃 𝑥 𝑦(1 − ℎ𝜃 𝑥)
1−𝑦

Logistic Regression

 The likelihood of the parameters is,

 L(𝜃)=P(𝑦 |x ; 𝜃)= 𝑖=1
𝑚 ℎ𝜃 𝑥𝑖 𝑦(𝑖)

(1 − ℎ𝜃 𝑥𝑖)
1−𝑦(𝑖)

 Maximize the log likelihood,

 ℓ 𝜃 = logL(𝜃)= 𝑖=1
𝑚 𝑦𝑖 log ℎ 𝑥𝑖 +(1 − 𝑦𝑖) log(1 − ℎ 𝑥𝑖)

Use gradient ascent to maximize log-likelihood

 Calculate the partial derivative:


𝜕ℓ(𝜃)

𝜕𝜃𝑗
= (y

1

𝑔 𝜃𝑇𝑥
- (1-y)

1

1−𝑔 𝜃𝑇𝑥
)
𝜕

𝜕𝜃𝑗
𝑔 𝜃𝑇𝑥

= (y
1

𝑔 𝜃𝑇𝑥
- (1-y)

1

1−𝑔 𝜃𝑇𝑥
) 𝑔 𝜃𝑇𝑥 (1-𝑔 𝜃𝑇𝑥)

𝜕

𝜕𝜃𝑗
𝜃𝑇𝑥

= (y(1-𝑔 𝜃𝑇𝑥) – (1-y) 𝑔 𝜃𝑇𝑥)𝑥𝑗

= (y - ℎ𝜃 𝑥) 𝑥𝑗

⟹ 𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑅𝑢𝑙𝑒: 𝜃𝑗:= 𝜃𝑗 + 𝛼

𝑖=1

𝑚

(𝑦𝑖 − ℎ𝜃 𝑥𝑖)𝑥𝑗
𝑖

Realize Logistic Regression in Python

Vectorization

Feature scaling

Gradient Descent converges much faster with feature scaling than

without it.

contour of the cost function: ‘oval

shaped’
contour of the cost function: ‘circle

shaped’

Feature scaling

 Before input the data into model, we need to standardize the data

first.

𝑧𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑗

𝑠𝑗

• 𝑥𝑖𝑗 is 𝑗𝑡ℎ data point in feature i

• 𝑥𝑗 is the sample mean

• 𝑠𝑗 is the standard deviation

Experiments: 0.0003 learning rate, 200 iterations

Experiments: 0.0001 learning rate, 200 iterations

Results and comparison

Our model LogisticRegression in scikit-

learn

Training Log Loss 0.1903 0.1901

Test Log Loss 0.3725 0.3687

Optimize the model by introducing Regularization

 Cost Function with L1 Regularization

 J(𝜃)=−
1

𝑚
 𝑖=1
𝑚 𝑦𝑖 log ℎ 𝑥𝑖 +(1 − 𝑦𝑖) log(1 − ℎ 𝑥𝑖) +

𝜆

𝑚
 𝑗=1
𝑛 |𝜃𝑗|

 Cost Function with L2 Regularization

 J(𝜃)=−
1

𝑚
 𝑖=1
𝑚 𝑦𝑖 log ℎ 𝑥𝑖 +(1 − 𝑦𝑖) log(1 − ℎ 𝑥𝑖) +

𝜆

2𝑚
 𝑗=1
𝑛 𝜃𝑗

2

Negative log-likelihood
Regularization term

Minimize the cost function using Newton’s method

 𝛻𝜃𝐽 =

1

𝑚
 𝑖=1
𝑚 (ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖)𝑥0

𝑖

1

𝑚
 𝑖=1
𝑚 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥1

𝑖 +
𝜆

𝑚
𝜃1

1

𝑚
 𝑖=1
𝑚 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥2

𝑖 +
𝜆

𝑚
𝜃2

⋮
1

𝑚
 𝑖=1
𝑚 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑛

𝑖 +
𝜆

𝑚
𝜃𝑛

 𝐻 =
1

𝑚
 𝑖=1
𝑚 ℎ𝜃 𝑥 𝑖 (1 − ℎ𝜃 𝑥 𝑖)𝑥 𝑖 (𝑥 𝑖)𝑇 +

𝜆

𝑚

0 0 … 0
0 1 … ⋮
⋮ ⋮ ⋱ ⋮

0 … … 1

 Updating Rule: 𝜃(𝑡+1) = 𝜃𝑡 −𝐻−1𝛻𝜃𝐽

Gradient

Hessian matrix

Results of model with regularization

Metrics (in average) Training Test

Log Loss 0.2294 0.2684

Accuracy 90.55% 86.38%

Comparison of regularized and non-regularized model

From the experiment we can see that the regularized model outperforms the non-regularized

logistic regression.

