# Mapping the Milky Way Halo with the Dark Energy Survey

James Long

Texas A&M University

AAAS - February 16, 2018

## Collaboration



Lucas Macri **Statistician** 

#### Astronomers



Jennifer Marshall



Katelyn Stringer



Zhenfeng Lin



Model for RR Lyrae Variable Stars

Results on SDSS Stripe 82 and DES SDSS Stripe 82: Simulation Dark Energy Survey: Preliminary Results

Model for RR Lyrae Variable Stars

Results on SDSS Stripe 82 and DES SDSS Stripe 82: Simulation Dark Energy Survey: Preliminary Results

## What are the distances to these objects?



#### **Problem:**

# $\label{eq:brightness} \propto \frac{luminosity}{distance^2}$ Only brightness can be directly measured.

Image Source: DES Collaboration

# Use Standard Candles to Determine Distances

Standard Candle: Class of objects with same luminosity

- Know absolute luminosity of standard candle.
- Determine object is standard candle and estimate its brightness.
- Solve for distance.



RR Lyrae (RRL): Standard candle star
All RR Lyrae have (approximately) same luminosity

# RR Lyrae are Standard Candle Periodic Variable Stars

**Variable stars:** Stars that vary in brightness across time. **Periodic variables:** Repeat brightness variation over a fixed period.



- phase = (time modulo period) / period
- period estimated from unfolded light curve
- star observed  $\approx 250$  times in 5 filters (u, g, r, i, z).

Distance to this star is proportional to mean magnitude.

# Sloan Digital Sky Survey (SDSS) III – Stripe 82



Star X Light Curve (Unfolded and Folded): Not an RR Lyrae



Source: See Ivezic [1]

# Identifying RRL

Features derived from light curves separate RR Lyrae from non-RRL.



# Stripe 82 Milky Way Halo Map

RR Lyrae Locations in Stripe 82



kpc

Source: Bottom right image taken from Sesar 2010 [2].

# Project Goal: Extend Milky Way Halo Maps to DES Region

## Dark Energy Survey (DES)

- ongoing survey (started 2013, 5 years of planned observing)
- 5000 square degrees ( $\approx 1/9^{th}$  entire sky)
- depths to 24 mag in i
- $\blacktriangleright$  pprox 200 million stars
- ▶  $\approx$  10 observations in each filter (g,r,i,z,Y) over five years



Challenge: DES stars are very sparsely observed.

## Model for RR Lyrae Variable Stars

Results on SDSS Stripe 82 and DES SDSS Stripe 82: Simulation Dark Energy Survey: Preliminary Results

## Traditional Features No Longer Separate RRL in DES Data

The features are very noisy due to the sparse temporal sampling.



Parameters of best fitting sinusoid no longer separate RRL from non-RRL.

# Building an RRL Model with SDSS Stripe 82 Data



**Common for all RR Lyrae?** Shape, difference in filter means. **What varies?** Distance, dust, amplitude, period, phase.

## Parsimonious RR Lyrae Model: 5 Free Parameters



individual parameters fit for each RR Lyrae

• 
$$D = \{\{t_{jb}, m_{jb}, \sigma_{jb}\}_{j=1}^{n_b}\}_{b=1}^{B}$$
  
• Model:

$$m_{jb} = m_b(t_{jb}) + \epsilon_{jb}\sigma_{jb}$$

where  $\epsilon_{jb} \sim N(0, 1)$  i.i.d.

# $\gamma_b(t) =$ median of functions at time t in filter b



# Example Fit to SDSS Light Curves



17 / 31

# Example Fit to SDSS Light Curves



# Example Fit to SDSS Light Curves



Model for RR Lyrae Variable Stars

#### Results on SDSS Stripe 82 and DES

SDSS Stripe 82: Simulation Dark Energy Survey: Preliminary Results

Model for RR Lyrae Variable Stars

Results on SDSS Stripe 82 and DES SDSS Stripe 82: Simulation Dark Energy Survey: Preliminary Results

# Simulate SDSS Stripe 82 to Resemble DES



#### Downsample Stripe 82 variables to 20 observations:



# Results for Period Estimation



# Simulation Results for Distance Estimation

- Use model to estimate distance modulus ( $\mu$ ) for RR Lyrae.
- Convert  $\mu$  to distance (d) in parsecs:  $d = 10^{\mu/5+1}$



# Reproducing Milky Way Halo Maps

## Select 379 RR Lyrae and 1000 non-RR Lyrae from SDSS Stripe 82.

- 1. Fit RR Lyrae Model to light curves
- 2. Extract features: model parameters, goodness-of-fit, etc.
- 3. Build Random Forest Classifier
- 4. Classify RRL / not-RRL for out-of-bag data (cross-validation)
- 5. Estimate distances to stars classified as RRL
- 6. Construct MW Halo map

## Summary of Steps 1–4:



|         | Predicted |     |
|---------|-----------|-----|
| Truth   | Not RRL   | RRL |
| Not RRL | 978       | 22  |
| RRL     | 40        | 339 |

# Results for Constructing Milky Way Halo Maps





#### Estimates on Downsampled





Model for RR Lyrae Variable Stars

Results on SDSS Stripe 82 and DES SDSS Stripe 82: Simulation Dark Energy Survey: Preliminary Results

# FORNAX Dwarf Spheroid Satellite Galaxy



Fornax is a satellite galaxy of the Milky Way.

Challenge: Find structure (sets of gravitationally bound stars) around FORNAX.

# FORNAX RR Lyrae Candidates

- $\blacktriangleright$   $\approx$  1 million stars in FORNAX region
- ► 8<u>41 RR Lyrae Candidates</u>, plotted on left



Courtesy Katelyn Stringer

- Multi-stage inference problem: model fitting / classification followed by parameter estimation.
  - This is a common challenge with astronomy data.
- Current work:
  - Characterize uncertainty in MW Halo maps / probabilistic predictions.
  - Extend analysis to entire DES footprint.

**Related Work:** B. Sesar 2017. "Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample" Astrophysical Journal.

- Željko Ivezić, J Allyn Smith, Gajus Miknaitis, Huan Lin, Douglas Tucker, Robert H Lupton, James E Gunn, Gillian R Knapp, Michael A Strauss, Branimir Sesar, et al. Sloan digital sky survey standard star catalog for stripe 82: The dawn of industrial 1% optical photometry. *The Astronomical Journal*, 134(3):973, 2007.
- [2] Branimir Sesar, Željko Ivezić, Skyler H Grammer, Dylan P Morgan, Andrew C Becker, Mario Jurić, Nathan De Lee, James Annis, Timothy C Beers, Xiaohui Fan, et al. Light curve templates and galactic distribution of rr lyrae stars from sloan digital sky survey stripe 82. The Astrophysical Journal, 708(1):717, 2010.