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Cell Line Perturbation Experiments

• Groups of cells are perturbed (e.g. drug applied)

• Responses measured (e.g. cell survival, gene expression)

• Many scientific uses for data including identification of
synergistic therapies in cancer [Zhao et al., 2020]
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In Silico Perturbation Modeling
• Challenge: Experimental resources are limited (time, money)
• Solution: In silico (computational) models are used to predict

the responses to untested conditions.

Perturbation Data Sets

LINCS L1000: ∼ 1 million experiments,
expression of 1000 response genes

measured [Subramanian et al., 2017]

Deleteome: ∼ 1500 single gene KO

with 6000 mRNA responses [Kemmeren

et al., 2014]

Modeling Approaches

Causal DAGS: Squires et al. [2022],
Meinshausen et al. [2016], Peters et al.

[2016]

Transfer Learning / VAE: Lotfollahi
et al. [2019, 2020, 2021]

6 / 38



Melanoma (SK-Mel-133) Perturbation Experiments
• Data collected in Korkut et al. [2015]
• Single cancer cell line SK-Mel-133
• 12 drugs applied to cell line at various doses

Goal 1: Construct model which can predict cellular responses to
these 12 drugs.
Goal 2 (more ambitious): Construct model which can predict
cellular responses to untested drugs.
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Drugs and Regulatory Networks

• Many drugs directly target a
particular protein
• An AKT inhibitor drug

reduces the expression of
AKT protein

• Drug D12 is an inhibitor of
protein X3.

• Proteins regulate expression
of other proteins /
phenotypes according to
some causal structure.
• An AKT inhibitor will

effect expression of
proteins which are
“downstream” from AKT
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Two Model Validation Strategies

Random Fold (RF) Leave One Drug Out (LODO)

LODO validation address how well a model can predict effects of yet
to be tested drugs (Goal 2).
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Overview of Remainder of Talk

• Regression Modeling
• Struggles with LODO validation.

• Cellbox Causal Model
• Makes more assumptions than regression models, but can (in

principal) achieve Goal 2.

• Comparison of Causal versus Regression Modeling
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Regression Model and Predictions

• D ∈ Rn×q are training drug concentrations (features)

• X ∈ Rn×p are training protein/phenotype (responses)

• d ∈ Rq test drug concentrations (features)

• x ∈ Rp test protein/phenotype (responses)

• Least squares regression fit:

R̂ = argmin
R

||X−DR||2F + λ||R||1.

• Predict response:
x̂ = dT R̂.

• Compare prediction x̂ with ground truth x
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Regression with RF and LODO Validation

• With λ = 0, R̂ is unique iff DTD is invertible:

R̂ = (DTD)−1DTX

• RF Validation:
• Invertibility will typically hold when n > q (e.g. holds in

Melanoma data set). Could regularize (use λ > 0) if many
drugs q relative to number of experiments n.

• LODO Validation:
• Invertibility never holds (If drug i is held out of training

(DTD)ii = 0)
• If λ > 0 and drug i is held out, then R̂i· = ~0

Qualitative Point: LODO validation requires extreme form of
extrapolation: predicting the effect of drug that has never been used
in training.
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Causal Modeling and LODO Prediction

How can causal models predict effect of untested drugs?

1. Use training data to learn
causal structure (grey arrows)

2. For new drug (not used in
training data), assume direct
target is known (blue arrow)

3. Propagate effect of new drug
through the inferred causal
structure.

Cellbox implements this idea with ODEs.
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Background on Cellbox

• Proposed in Yuan et al. [2021] in Cell Systems

• Ordinary Differential Equations (ODE) model

• Yuan et al. [2021] proposed LODO validation as a more rigorous
form of model testing

• Cellbox outperformed competitor methods in RF and LODO
validation. Competitors:
• Neural networks
• Belief propagation
• Co–expression models
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Cellbox ODE Model
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Parameter Estimation
Steady State:

xki (θ) ≡ lim
t→∞

xki (t, θ).

Loss Function:

L(θ) =
∑
k

∑
i

|xki − xki (θ)|2 + λ||W − diag(W )||1

Minimize Loss Over θ:

Ŵ , ε̂ = argmin
θ=(W,ε)

L(θ). (1)

Notes:

• Only steady state data collected on Melanoma, so only steady
state value implied by model influences loss.

• Heun’s ODE solver + Adam optimizer used to fit parameters.
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Closed Form Steady State for Linear Cellbox
Theorem

Suppose φ is identity envelope function, ε = 1, and W is invertible.
Then

xk(θ) = (xk1(θ), . . . , x
k
p(θ))

T = −W−1Bdk

and

Ŵ = argmin
W

||X−DBT (−W−1T )||2F + λ||W − diag(W )||1.

Proof Sketch.

• Assumptions imply linear systems of ODEs.

• Linear systems of ODEs have closed form solutions.

• Take time limit (t→∞) of solution.
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Causal versus Regression Comparison
Ignoring regularization terms:

Ŵ = argmin
W

||X−DBT (−W−1T )||2F

• Estimates W , direct effect of response variables on each other

• Requires knowledge of B, direct targets of drugs

• Ŵ can be uniquely defined even when drug is never used, i.e.
column of D is 0. Only need DBT to be full column rank.

• Qualitative Idea: Model can predict for held out drug (not
used in training) by using other drugs which have same direct
protein targets as held out drug.

Regression: R̂ = argmin
R

||X−DR||2F
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Parameters
• p = 5 response variables

• q = 15 drugs
• 5 drugs target 1 response
• 10 drugs target 2 response

• All combinations of 2 drugs
tested so n =

(
15
2

)
= 105

• D ∈ {0, 1}n×15
• B matrix

• Drugs with 1 target have
effect 1 on target

• Drugs with 2 targets have
effect 1/2 on each target

• δX ∈ R105×5, all elements
independent distributed
N(0, 0.22)

True Causal DAG A

X1

X2

X3

X4

X5

X = DBT (I − A)−1 + δX
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Testing Conditions

Compare Regression with Causal Estimator in 3 settings:

• Random Fold (RF):
• Data is divided randomly into 2/3 training and 1/3 test

• RF with B Misspecified:
• Training–test set split is identical to RF.
• B matrix (direct effect of drugs) is misspecified.
• 10 drugs with 2 targets are assumed to influence their targets

with a strength of 1

• Leave-one-drug-out (LODO):
• One drug is left out of the training set.
• For the regression estimator, the coefficient on the left out drug

is set to 0.
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Simulation Prediction Performance
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• RF: Regression and Causal model both obtain good performance
• RF with B Misspecified: Causal model has poor performance

• Regression is completely robust to misspecification
• LODO: Regression has poor performance
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Simulation Imputed DAGs with Causal Model
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Background

• Data collected in Korkut et al. [2015]
• Korkut modeled with Belief Propagation algorithms

• Yuan et al. [2021] developed / tested Cellbox on data
• Proposed LODO validation
• Cellbox outperformed all competitors
• Did not compare Cellbox to Linear Regression on RF or LODO

• We follow Yuan et al. [2021] for model validation setup

• Use Cellbox results from paper
• Sigmoid function φ
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Random Fold Validation Setup

• 70% training / 30% testing data split

• Repeated 1000 times

• Obtain roughly 300 = 0.3× 1000 predictions for each condition

• Average predicted responses.

• Compute correlation between predictions and experimentally
observed responses
• n× 87 predictions
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Random Fold Validation Results
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Pearson's correlation: =0.925
Mean Abs. Error: 0.105
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Linear Regression

Linear regression outperforms Cellbox in RF validation.

32 / 38



LODO Setup

• For drug A ∈ {1, . . . , 12}
• Training set is all conditions where drug A not used
• Test set is all other conditions
• For linear regression, set effect of drug A on responses to 0
• Compute correlation between observed and predicted responses

for Cellbox and Linear Regression

• Results in 12 correlations (1 / drug) for each model
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LODO Results

Cellbox Linear Regression0.0
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Average correlation coefficient:
• 0.780 for Cellbox
• 0.784 for Linear regression

Conclusion: Linear regression and Cellbox obtain very similar
performance in LODO.
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Summary

• We derived some of the first analytic results comparing causal
discovery models for prediction with regression models.

• Causal discovery models make more assumptions than the
regression approach, but can extrapolate to predict effect of
untested drugs.
• Focused on linear modeling case, but qualitative concepts apply

to non–linear models.

• Achieved state–of–the art prediction performance on the
Melanoma cell line using linear regression. This highlights the
importance of benchmarking in bioinformatics.
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J. Peters, P. Bühlmann, and N. Meinshausen. Causal inference by using invariant prediction: identification and confidence
intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(5):947–1012, 2016.

C. Squires, D. Shen, A. Agarwal, D. Shah, and C. Uhler. Causal imputation via synthetic interventions. In Conference on Causal
Learning and Reasoning, pages 688–711. PMLR, 2022.

A. Subramanian, R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli, X. Lu, J. Gould, J. F. Davis, A. A. Tubelli, J. K. Asiedu,
et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 171(6):1437–1452, 2017.

B. Yuan, C. Shen, A. Luna, A. Korkut, D. S. Marks, J. Ingraham, and C. Sander. Cellbox: interpretable machine learning for
perturbation biology with application to the design of cancer combination therapy. Cell systems, 12(2):128–140, 2021.

W. Zhao, J. Li, M.-J. M. Chen, Y. Luo, Z. Ju, N. K. Nesser, K. Johnson-Camacho, C. T. Boniface, Y. Lawrence, N. T. Pande,
et al. Large-scale characterization of drug responses of clinically relevant proteins in cancer cell lines. Cancer Cell, 38(6):
829–843, 2020.

38 / 38


	Cell Line Perturbation Experiments
	Modeling Strategies
	Regression
	Causal Model (Cellbox)

	Comparison
	Analytic
	Simulation
	Melanoma Cell Line Data

	References

