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My Background

• Research interests:

• Visiting Shiga University for June.

• Collaborating with Professor Shimizu.

• Please come visit me in 317 (jplong@mdanderson.org).
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Today’s Talk: Collaboration
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Cell Perturbation Experiments

• Groups of cells are perturbed (e.g. drug applied)

• Responses measured (e.g. cell survival, gene expression)

• Many scientific uses for data including identification of
synergistic therapies in cancer [Zhao et al., 2020]
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In Silico Perturbation Modeling
• Challenge: Experimental resources are limited (time, money)
• Solution: In silico (computational) models are used to predict

the responses to untested perturbations/interventions.

Perturbation Data Sets

LINCS L1000: ∼ 1 million experiments,
expression of 1000 response genes

measured [Subramanian et al., 2017]

Deleteome: ∼ 1500 single gene KO

with 6000 mRNA responses [Kemmeren

et al., 2014]

Modeling Approaches

Causal DAGS: Squires et al. [2022],
Meinshausen et al. [2016], Peters et al.

[2016]

Transfer Learning / VAE: Lotfollahi
et al. [2019, 2020, 2021]
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Melanoma (SK-Mel-133) Perturbation Experiments
• Data collected in Korkut et al. [2015]

• Single cancer cell line SK-Mel-133

• 12 drugs applied to cell line at various doses

Goal 1: Predict responses to combinations of these 12 drugs.
Goal 2 (more ambitious): Predict responses to new drugs.
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Two Forms of Model Validation

Random Fold (RF) Leave One Drug Out (LODO)

• RF used for assessing model performance on Goal 1.

• LODO used for assessing model performance on Goal 2.
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Cellbox Model
• Cellbox: Computational model to predict cell responses to drugs
• Designed to predict responses in LODO (unseen perturbations)
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Cellbox Results on LODO

• For drug i = {1, . . . , 12}
• Training is all conditions where drug i not used.
• Fit model (cellbox or other) on training
• Compute correlation between predictions and experimental

response on test (drug i is always used)

Cellbox had best performance of methods tested.
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Overview of Remainder of Talk

• Two Prediction Strategies
• Regression
• Causal Discovery / Structure Learning

• Cellbox
• Introduce Cellbox model
• Theory connecting Cellbox and Causal Structure Learning

• Comparison of Modeling Strategies
• Simulations
• Application to Melanoma data
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Regression Model and Predictions

• D ∈ Rn×q are training drug concentrations (features)

• X ∈ Rn×p are training protein/phenotype (responses)

• d ∈ Rq test drug concentrations (features)

• x ∈ Rp test protein/phenotype (responses)

• Least squares regression fit:

R̂ = argmin
R

||X−DR||2F + λ||R||1.

• Predict response:
x̂ = dT R̂.

• Compare prediction x̂ with ground truth x
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Regression with RF and LODO Validation

• With λ = 0, R̂ is unique iff DTD is invertible:

R̂ = (DTD)−1DTX

• RF Validation:
• Invertibility will typically hold when n > q (e.g. holds in

Melanoma data set). Could regularize (use λ > 0) if many
drugs q relative to number of experiments n.

• LODO Validation:
• Invertibility never holds (If drug i is left out of training

(DTD)ii = 0)
• If λ > 0 and drug i is left out, then R̂i· = ~0

Qualitative Point: LODO validation requires extreme form of
extrapolation: predicting the effect of drug that has never been used
in training.
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Drugs and Regulatory Networks

• Many drugs directly target a
particular protein
• AKT inhibitor drug (D12)

reduces the expression of
AKT protein (X3)

• Proteins regulate expression
of other proteins /
phenotypes according to
some causal structure.
• AKT (X3) effects

expression of
“downstream” proteins
(X6 and X10)
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Causal Modeling and LODO Prediction

How can causal models predict effect of untested drugs?

1. Use training data to learn
causal structure (grey arrows)

2. For new drug (not used in
training data), assume direct
target is known (blue arrows)

3. Propagate effect of new drug
through the inferred causal
structure.
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Causal Structure Learning + Prediction

Simple implementation of idea:

• Linear intervention + linear causal structure model:

X = XA+DBT + ε

• X ∈ Rn×p protein responses
• D ∈ Rn×q drug concentrations
• Aij = causal effect of Xi on Xj

• Bil = effect of 1 unit of drug l on response Xi

• Causal Structure Learning (CSL):

Â = argmin
A

||X−DBT (I − A)−1||2F + λ||A||1

• Predict response
x̂ = dTBT (I − Â)−1.
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Regression versus CSL
With λ = 0 (no regularization):

Regression: R̂ = argmin
R

||X−DR||2F

CSL: Â = argmin
A

||X−DBT (I − A)−1||2F

• Regression model estimates total effect of drug on response.

• Causal model estimates direct effect of response variables on
each other
• Requires knowledge of B, direct targets of drugs
• Â may be uniquely defined even when drug is never used, i.e.

column of D is 0. Only need DBT to be full column rank.

• Main Point: Causal model can predict for left out drug (not
used in training) by using other drugs which have same direct
protein targets as left out drug.
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Background on Cellbox

• Cellbox model proposed in Yuan et al. [2021]

• Obtained best prediction performance on RF and LODO

• Presented system of ODEs. No discussion of causality in paper.

Cellbox (Linear Version):

• W ∈ Rp×p

• xk(t,W ) = predicted
response to condition k at
time t

∂xk(t,W )

∂t
= Wxk(t,W ) +Bdk
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Full Cellbox ODE Model
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Parameter Estimation
Steady State:

xk(θ) ≡ lim
t→∞

xk(t, θ).

Loss Function:

L(θ) =
∑
k

||xk − xk(θ)||22 + λ||W − diag(W )||1

Minimize Loss Over θ:

Ŵ , ε̂ = argmin
θ=(W,ε)

L(θ). (1)

Notes:

• Only steady state data collected on Melanoma, so only steady
state value implied by model influences loss.

• Heun’s ODE solver + Adam optimizer used to fit parameters.

26 / 45



Cellbox as Causal Structure Learning Model

Theorem

For Linear Cellbox with W ≺ 0, steady state is

xk(θ) = −W−1Bdk

and

Ŵ = argmin
W

||X−DBT (−W−1T )||2F + λ||W − diag(W )||1.

Proof Idea.

• Linear systems of ODEs have closed form solutions.

• Take time limit (t→∞) of solution.
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Comments on Result

• Without regularization the models are:

Regression: R̂ = argmin
R

||X−DR||2F

CSL: Â = argmin
A

||X−DBT (I − A)−1||2F

Linear Cellbox: Ŵ = argmin
W

||X−DBT (−W−1T )||2F

• Linear Cellbox is equivalent to CSL model with W = −(I −A)T .

• Similar results connecting dynamical systems and causal graphs
with cycles [Lacerda et al., 2012, Dash, 2005]
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Simulation Parameters
• p = 5 response variables

• q = 15 drugs
• 5 drugs target 1 response
• 10 drugs target 2 response

• All combinations of 2 drugs
tested so n =

(
15
2

)
= 105

• D ∈ {0, 1}n×15
• B matrix

• Drugs with 1 target have
effect 1 on target

• Drugs with 2 targets have
effect 1/2 on each target

• ε ∈ R105×5, all elements
independent distributed
N(0, 0.12)

X = XA+DBT + ε

X1

X2

X3

X4

X5

True Causal DAG A
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Compare Regression with CSL in 3 Settings

1. Random Fold (RF):
• Data is divided randomly into 2/3 training and 1/3 test

2. RF with B Misspecified:
• Training–test set split is identical to RF.
• B matrix (direct effect of drugs) is misspecified.
• 10 drugs with 2 targets are assumed to influence their targets

with a strength of 1

3. Leave-one-drug-out (LODO):
• One drug is left out of the training set.
• For the regression estimator, the coefficient on the left out drug

is set to 0.
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Simulation Prediction Performance

MAE: 0.156
Pearson: 0.974
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• RF: Regression and Causal model both obtain good performance
• RF with B Misspecified: Causal model has poor performance

• Regression is completely robust to misspecification
• LODO: Regression has poor performance
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Estimated Causal Graphs using CSL Model
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Background

• Data collected in Korkut
et al. [2015]

• Yuan et al. [2021] developed
/ tested Cellbox on data
• Proposed LODO validation
• Cellbox outperformed all

competitors
• Did not compare Cellbox

to Linear Regression on
RF or LODO

• We follow Yuan et al. [2021]
for model validation setup

• Use Cellbox results from
paper
• Sigmoid function φ

Graph learned by Cellbox
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Random Fold Validation Setup

• 70% training / 30% testing data split

• Repeated 1000 times

• ≈ 300 (0.3× 1000) predictions for each condition

• Average predicted responses for each condition.

• Compare predictions and experimentally observed responses
• n× 87 predictions
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Random Fold Validation Results
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Pearson's correlation: =0.925
Mean Abs. Error: 0.105
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Linear Regression

Linear regression outperforms Cellbox in RF validation.
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LODO Setup

• For drug i ∈ {1, . . . , 12}
• Training set is all conditions where drug i not used
• Test set is all other conditions
• For linear regression, set effect of drug i on responses to 0
• Compute correlation between observed and predicted responses

for Cellbox and Linear Regression

• Results in 12 correlations (1 / drug) for each model
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LODO Results

Cellbox Linear Regression0.0
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Average correlation coefficient:
• 0.780 for Cellbox
• 0.784 for Linear regression

Conclusion: Linear regression and Cellbox obtain very similar
performance in LODO.
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Summary

• Evaluated causal model (Cellbox) using prediction performance
• Traditionally causal inference focuses on parameter estimation.

Conclusions sensitive to difficult to verify confounding
assumptions.

• Prediction performance is more objective / unbiased.

• Linear regression achieved best prediction performance on
Melanoma data set.
• Message: Start with Linear Regression when modeling.
• Reasons for Poor Performance of Causal Model:

• Only 12 drugs and ∼ 90 response variables. Very challenging to
estimate causal structure.

• Direct effect of drugs (B matrix) misspecified.
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Summary

• Causal structure learning requires more assumptions, but can
predict in LODO validation where regression fails.
• Focused on linear modeling case, but conclusions apply to

non–linear models.

• Future / ongoing work: Replace A learning model with causal
discovery algorithm (e.g. LiNGAM) or hybrid
(LiNGAM+Intervention).

X = XA+DBT + ε
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