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What are Prognostic Models?
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Example 1: mCRPC

e Halabi et al. [2014] developed prognostic model for predicting
time from metastasis to death in metastatic castrate resistant
prostate cancer (mCRPC)

® Model score stratifies patients into risk groups [Halabi et al.,
2023]
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Example 2: Lung Cancer

e Alexander et al. [2017] developed Lung Cancer Prognostic Index
(LCPI) for predicting time from diagnosis to death in Lung
Cancer

Table 3. Weighted scores for predi

e model for overall

survival in newly diagnosed non-small-cell lung cancer
LCPI points m-LCPI
Stage group
1 0 0
I 2 2 C
1A 5 4
108 7 6 —
v 9 8 <
NSCLC NOS 3 3 g
No proven actionable mutation® 3 3 2
ECOG performance status 2 3 Excluded S
Ever smoker 2 2 S
Respiratory comorbidity 2 2 a
Weight loss >10% 2 Excluded
Male sex 1 1
Age group 50 or less 0 1 2 3 4
sl i i Years from diagnosis
71-90 2 2 Number at risk
91 years 3 3 LCPI1 (=9) 63 54 33 22 4 0
LCPI Group LCPIscore | m-LCPI score LCPI 2 (10-13) 55 37 21 13 3 0
LCPI 1 <9 <8
P12 10013 oo LCPI 3 (14-16) 75 29 14 6 4 0
LCPI 3 14-16 12-14 LCPI 4 (=17) 91 15 5 2 2 0
LcPi 4 >17 >15
Abbreviations: ALK = anaplastc ymphoma kinase; ECOG  Eastern Cooperative Oncology.
Group; EGFR = epidermal growth fator receptor; LCPI= Lung Cancer Prognostic Index;
m-LCPI=modified lung s Lc
non-small-cll lung cancer
includes EGFR/ALK negative, KRAS positive, mutation not tested.
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Outline

Feature: Cancer Detection Method
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Cancer Screening

e Cancer screening has the potential to detect tumors early, prior
to clinical symptoms.

e Cancers diagnosed at an early stage (I or Il) have better
prognosis than those diagnosed at a late stage (Il or IV)

Low—Dose CT Circulating Biomarkers

Laboratory | |}
analysis )
Ss

Chest X—Ray

Tumor
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Detection Method and Tumor Growth Rate

ScreenTime 1 Screen Time 2

Fast growing tumor
detected by

symptoms (interval) Slow growing tumor

]
.",;" de(ecte/q by screening
e e
o y
g N yd Symptom Detection
F / Threshold
/

Screen Detection
Threshold

I
Tumorigenesis Time

Screen detected tumors are (on average) slower growing than interval
detected tUMOTrS. [abert et al., 1978, Morrison, 1092, Kramer et al., 2021]
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Detection Method and Prognostic Significance

® Detection Method = Screen or Interval
® Expect screen detected tumors to have better prognosis:
Screen detection — earlier stage at diagnosis — better prognosis
® Screen detected tumors tend to be slower growing than interval
detected tumors.
® Tumor growth rate is rarely known, not used in prognostic

models.
® Detection method may be a proxy for tumor growth rate.
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Existing Literature and Hypothesis

® Joensuu et al. [2004] found lower risk of distant recurrence in
Screen detected breast cancers relative to interval detected.

® Shen et al. [2005] found better survival in screen—detected
breast cancer

® Mook et al. [2011] found screen detected breast tumors have
better survival

® Most existing work studying prognostic value of detection
method focused on breast cancer and mammograms

Hypothesis: Detection Method has independent prognostic
significance in predicting survival time in patients diagnosed with lung
cancer.
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PLCO Screening Trial

® \We obtained data from the PLCO Cancer Screening Trial
[Andriole et al., 2005]
® PLCO assessed efficacy of screening in 4 cancer types
® The Lung cohort of PLCO compared 4 annual chest X-rays to
standard of care
[Cricowne ]

Intervention Control
(n=77,443) (n=77,444)

NSCLC with Stage NSCLC with Stage
(n=1634) (n=1547)

| I

Detection Method Detection Method
Screen (n=286) Control (n=1547)
Interval (n=155)
Never (n=190)

Post (n=1003)

Detection Method:
® Screen = Detected at annual X-ray screening
® |Interval = Detected between annual screenings
® Never = Detected in patient who did not attend screenings
® Post = Detected after screening period ended
® Control = Detected in control group.
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PLCO Screening Trial

® Performed two analyses:
® 4-year cohort: Patients diagnosed lung cancer within 4 years
after randomization
® Extended cohort: All patients diagnosed with NSCLC with
Stage information
® Grouped Never and Post detected tumors into category Other
® Detection Method = {Screen,Interval,Other,Control }
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Cohort Summary

Table 1. Characteristics of lung cancers detected in PLCO.

Characteristic Screen, N =279 Interval, N=148 Other, N=81 Control, N=426 p-value

Stage <0.001
Stage I 140 (50%) 39 (26%) 20 (25%) 101 (24%)

Stage II 26 (9.3%) 10 (6.8%) 3 (3.7%) 44 (10%)
Stage 11T 69 (25%) 42 (28%) 20 (25%) 134 (31%)
Stage IV 44 (16%) 57 (39%) 38 (47%) 147 (35%)

Age 0.5

<=59 58 (21%) 37 (25%) 11 (14%) 83 (19%)
60-64 67 (24%) 35 (24%) 24 (30%) 125 (29%)
65-69 98 (35%) 46 (31%) 28 (35%) 126 (30%)

>=70 56 (20%) 30 (20%) 18 (22%) 92 (22%)

Sex 0.5
Female 113 (41%) 59 (40%) 36 (44%) 157 (37%)

Male 166 (59%) 89 (60%) 45 (56%) 269 (63%)

Smoked <0.001
No 23 (8.2%) 8 (5.4%) 5 (6.2%) 29 (6.8%)

Yes 256 (92%) 139 (94%) 63 (78%) 377 (88%)
Unknown 0 (0%) 1(0.7%) 13 (16%) 20 (4.7%)

Histology <0.001
Adenocarcinoma 134 (48%) 58 (39%) 29 (36%) 189 (44%)
Bronchiolo-alveolar 33 (12%) 10 (6.8%) 2 (2.5%) 20 (4.7%)

Squamous cell 59 (21%) 33 (22%) 23 (28%) 109 (26%)

Large cell 21(7.5%) 10 (6.8%) 3 (3.7%) 26 (6.1%)

Other NSC 6(2.2%) 4(2.7%) 2 (2.5%) 4(0.9%)

Carcinoma, NOS 21(7.5%) 28 (19%) 21 (26%) 74 (17%)

Other/Unknown 5 (1.8%) 5 (3.4%) 1(1.2%) 4 (0.9%)
n (%)

Fisher’s Exact Test for Count Data with simulated p-value(based on 2000 replicates)
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Survival by Detection Method
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® |eft: Screen detected tumors how much longer survival times
than other types.
e Right: Difference remains significant after controlling for stage.
® This suggests Detection Method has independent prognostic
significance (perhaps because proxy for tumor growth rate).
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LCPI [Alexander et al., 2017]

1. Used a Cox Proportional Hazards model (Cox PH) to identify important
predictors of survival for NSCLC in Australian cohort.

2. Points assigned to values of variable (Stage Il = 2 points, Stage IV =9
points) based on hazard ratios in Cox model.

3. Cutoffs chosen based on total points to classify patients into LCPI |
through IV.

4. Kaplan Meier survival curves compared for LCPI | - IV on validation sets.

Step 1 Step 2 + Step 4

Table 2. Predictors of survival in the derivation cohort by multivariate Cox prd

LcPl !

z
H
HR | LogHR| 95%Cl | Pvalue® i
Stage group §
10 000 H
157 | 045 [096-258 009
306 | 112 | 205457 <001
aas | 149 | 291680 <001
798 | 208 | 5551152 <001
NSCLC NOS 191 | 0ss | 148265 it o w R
No proven actionable mutation” 191 | oes [131-25 whziom s wooa o
£COG parormanca satus 52 17 | osr |woen e -
Ever Smoker 165 | 050 | 119235
Respiratory comorbidty 146 | 038 |111-1es
Weight loss >10% 142 | 035 [ 113179

1.11-1.68
1.05-1.50
C0G,
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Testing Hypothesis

1. Identified all significant prognostic variables in LCPI which were
also available in PLCO data set.

2. Added Detection Method variable to this set.

3. Fit a Cox Proportional Hazards model on data (following
Alexander et al. [2017]).
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Cox PH Model Summary

Ch istic log(HR) 95% CI p-value
Detection
Screen — —
Interval 061 039,08 <0.001
Other 046 019,074 0001 .
Control 043 026,060 <0.001 ° p—values for Detection Method
Stage . . .t
Stagel . . highly significant
Stage IT 050 024,077 <0.001 ] ]
e 3 el <o ® Hazard ratios for Detection
e B B Method larger than for several
N Pl other prognostic variables such as
>=70 071 049,093  <0.001 :
o Sex and Histology
Female — — .
Male 017 002,031 0024 o (C—Indices:
Smoked
No — —
Yes 035 006,065 0020
Unknown 037  -010,083 012 C-Index
Histology
Adenocarcinoma — — L C P I 0 . 74
Bronchiolo-alveolar -0.54 -0.85,-0.23  <0.001
Squamous cell 0.13 -0.05, 0.31 0.2 P L C O L un g 0 - 76
Large cell 022 051,007 013
Other NSC 022 076,032 04
Carcinoma, NOS 0.15 -0.05, 0.35 0.14
Other/Unknown 0.17 -0.35, 0.70 0.5

HR = Hazard Ratio, CI = Confidence Interval
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Outline

Models and Algorithms: Random Survival Forests
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Proportional Hazards (PH) Assumption

® Hazard at time t = death rate at time t
e Cox Proportional Hazards (Cox PH) model assumes that hazard

ratios do not vary with time

—~ Interval Hazard

HR 1.84

Screen Hazard

® Reality can be much more complicated

® The hazard ratio may change with time.
® The hazard ratio may be different for different values of other
covariates, e.g. males and females.
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Example of Violation of PH Assumption
® Patients randomized to risky surgery or control

® Surgery hazard: Initially high because of surgical complications
but lower at later times due to tumor removal
® Control hazard: Constant

Control — Surgery

1.00

2- Treatment

Survival probability
o
3

2
I Control
o
I

= Surgery

0 05 1 15 2
Time (years) 14
Number at risk
100 70 58 52 33
Surgery {100 82 69 64 61 0-
0 0.5 o1 15 2 00 05 10 s 20
Time (years)

Time (years)

R — Surgery Hazard [ 6 0<t<0.1
~ Control Hazard | 0.5 ¢>0.1

Cox PH Estimated Hazard = 0.57
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Consequences of Violations in Model Assumptions

e “All models are wrong, some models are useful.”

- George E.P. Box
® Severity in violation of PH assumption is important
e Concerns with PLCO Lung Application:

1. Detection Method may no longer be a significant predictor if a
different model is used

2. Other models may obtain better prediction performance (e.g.
C—index)
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Random Survival Forests (RSF)

CART (1984) Random Forest (2001) RSF (2008)
g gme\, . Tree 1 Tree 2 Stage
. ey e . L //A\\\lmw
Subty Age
Interpretation Prediction Assumptions Data Size
Cox PH v’ Smaller
RSF v’ v’ Larger

Breiman et al. [1984], Breiman [2001], Ishwaran et al. [2008]
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RSF Variable Importance

® Project Goal: Assess importance of Detection Method in
Prognostic models
® CoxPH variable importance usually measured by size of HR and
p—values
® RSF does not directly compute HR or p—values
® RSF Variable Importance

1. Values of a variable X are permuted among the patients.
2. Compute C-index using permuted X variable.
3. VIMP = C-index with true X - C-index with permuted X.
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Results of Random Survival Forests
® Variable Importance (VIMP) Scores:

4-Year Cohort Extended Cohort

Stage
Detection
Age
Histology
Sex

Smoked

0.17631
0.01440
0.00671
0.00382
0.00085

0.00064

0.16060
0.00425
0.00601
0.00713
0.00311

-0.00012

Detection Method is second most important predictor in 4-year

cohort.
® C—Indices:
C-Index
Cox PH 0.76
RSF 0.75

Similar between two models.
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Reproducible Results

® Project analysis done in RMarkdown
e All code publicly available
e PLCO data may be requested from CDAS

[ YP———

NATIONAL CANCER INSTITUTE
Cancer Data Access System Welcome! Please Log I or Register
=
AF pective Study for C ion and
— NLST Evaluation of Cancer Screening Models from
PLCO the PLCO Trial: Pancreatic, Prostate, Lung,
IDATA Colorectal, and Ovarian Cohorts
_ Early Phase
Prevention Trals

Principal Investigator
Additional Studies.

s Name
sames Loy

BOWSO APy Dogrees

https://github.com/longjp/plco-lung-detection-method
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Outline

Web Apps for Sharing Models
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Glioblastoma Multiforme (GBM)

e GBM is the most deadly form of brain cancer
® 5-year survival rate < 10%

e Question: What variables (clinical, imaging, genomic) are
predictive of survival? Can we identify long-term survivors?
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Project Outline

MD Anderson GBM
Patient Cohort Proportions Odds
- STS: < 6 months (n=37) ——  Ordinal Regression ———
- MTS: 6 months - 5 years (n=22) Model with 5 features
- LTS: >5 years (n=21) I |

THE CANCER GENOME ATLAS

Validation Cohort

® Considered publishing model as nomogram in paper
® These can be difficult to use / inaccessible to patients /

caregivers
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Shiny Web App

son.org/shi

BM_Predict/

dictions
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https://biostatistics.mdanderson.org/shinyapps/GBM_Predict/
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Reproducible Research

Neuro-Oncology Advances

3(1), 1-10, 2021 | doi:10.103/noajnl/vdaa146 | Advance Access date 31 October 2020

A validated integrated clinical and molecular
glioblastoma long-term survival-predictive nomogram

Sherise D. Ferguson, Tiffany R. Hodges', Nazanin K. Majd, Kristin Alfaro-Munoz, Wajd N. Al-Holou,
Dima Suki, John F. de Groot, Gregory N. Fuller, Lee Xue, Miao Li, Carmen Jacobs, Ganesh Rao,
Rivka R. Colen, Joanne Xiu, Roel Verhaak", David Spetzler, Mustafa Khasraw", Raymond Sawaya,
James P Long’, and Amy B. Heimberger"

https://github.com/longjp/GBMpredict
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Discussion

® Detection Method should be recorded in clinical trial data bases
/ cancer registries and considered as variable when constructing
prognostic models.

® Modern machine learning / Al tools should be considered when
constructing prognostic models. But they are not necessarily
superior to existing methods on given data set. Comparison of
new tool with existing methods is critical.

® Prognostic models can be deployed as web applications to
facilitate / accelerate use by clinicians, patients, and caregivers
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Thank you. Questions?
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