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What are Prognostic Models?
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Example 1: mCRPC

• Halabi et al. [2014] developed prognostic model for predicting
time from metastasis to death in metastatic castrate resistant
prostate cancer (mCRPC)

• Model score stratifies patients into risk groups [Halabi et al.,
2023]
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Example 2: Lung Cancer

• Alexander et al. [2017] developed Lung Cancer Prognostic Index
(LCPI) for predicting time from diagnosis to death in Lung
Cancer
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Today’s Talk

• What features/predictors to use?
• What statistical / machine learning / AI method to use to

construct the model?
• How to disseminate results to users (patients, doctors, etc.)?
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Cancer Screening

• Cancer screening has the potential to detect tumors early, prior
to clinical symptoms.

• Cancers diagnosed at an early stage (I or II) have better
prognosis than those diagnosed at a late stage (III or IV)

Chest X–Ray Low–Dose CT Circulating Biomarkers
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Detection Method and Tumor Growth Rate

Screen detected tumors are (on average) slower growing than interval
detected tumors. [Albert et al., 1978, Morrison, 1992, Kramer et al., 2021]
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Detection Method and Prognostic Significance

• Detection Method = Screen or Interval

• Expect screen detected tumors to have better prognosis:

Screen detection → earlier stage at diagnosis → better prognosis

• Screen detected tumors tend to be slower growing than interval
detected tumors.
• Tumor growth rate is rarely known, not used in prognostic

models.
• Detection method may be a proxy for tumor growth rate.
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Existing Literature and Hypothesis

• Joensuu et al. [2004] found lower risk of distant recurrence in
Screen detected breast cancers relative to interval detected.

• Shen et al. [2005] found better survival in screen–detected
breast cancer

• Mook et al. [2011] found screen detected breast tumors have
better survival

• Most existing work studying prognostic value of detection
method focused on breast cancer and mammograms

Hypothesis: Detection Method has independent prognostic
significance in predicting survival time in patients diagnosed with lung

cancer.
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PLCO Screening Trial
• We obtained data from the PLCO Cancer Screening Trial

[Andriole et al., 2005]
• PLCO assessed efficacy of screening in 4 cancer types
• The Lung cohort of PLCO compared 4 annual chest X-rays to

standard of care

Detection Method:
• Screen = Detected at annual X-ray screening
• Interval = Detected between annual screenings
• Never = Detected in patient who did not attend screenings
• Post = Detected after screening period ended
• Control = Detected in control group.
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PLCO Screening Trial

• Performed two analyses:
• 4-year cohort: Patients diagnosed lung cancer within 4 years

after randomization
• Extended cohort: All patients diagnosed with NSCLC with

Stage information

• Grouped Never and Post detected tumors into category Other
• Detection Method = {Screen,Interval,Other,Control}
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Cohort Summary
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Survival by Detection Method

• Left: Screen detected tumors how much longer survival times
than other types.
• Right: Difference remains significant after controlling for stage.

• This suggests Detection Method has independent prognostic
significance (perhaps because proxy for tumor growth rate).
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LCPI [Alexander et al., 2017]
1. Used a Cox Proportional Hazards model (Cox PH) to identify important

predictors of survival for NSCLC in Australian cohort.

2. Points assigned to values of variable (Stage II = 2 points, Stage IV = 9
points) based on hazard ratios in Cox model.

3. Cutoffs chosen based on total points to classify patients into LCPI I
through IV.

4. Kaplan Meier survival curves compared for LCPI I - IV on validation sets.

Step 1 Step 2 + 3 Step 4
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Testing Hypothesis

1. Identified all significant prognostic variables in LCPI which were
also available in PLCO data set.

2. Added Detection Method variable to this set.

3. Fit a Cox Proportional Hazards model on data (following
Alexander et al. [2017]).
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Cox PH Model Summary

• p-values for Detection Method
highly significant

• Hazard ratios for Detection
Method larger than for several
other prognostic variables such as
Sex and Histology

• C–Indices:

C-Index

LCPI 0.74
PLCO Lung 0.76

20 / 36



Outline

Prognostic Models

Feature: Cancer Detection Method

Models and Algorithms: Random Survival Forests

Web Apps for Sharing Models

21 / 36



Proportional Hazards (PH) Assumption

• Hazard at time t = death rate at time t

• Cox Proportional Hazards (Cox PH) model assumes that hazard
ratios do not vary with time

ĤR =
Interval Hazard

Screen Hazard
= 1.84

• Reality can be much more complicated
• The hazard ratio may change with time.
• The hazard ratio may be different for different values of other

covariates, e.g. males and females.
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Example of Violation of PH Assumption
• Patients randomized to risky surgery or control
• Surgery hazard: Initially high because of surgical complications

but lower at later times due to tumor removal
• Control hazard: Constant
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Consequences of Violations in Model Assumptions

• “All models are wrong, some models are useful.”
- George E.P. Box

• Severity in violation of PH assumption is important

• Concerns with PLCO Lung Application:

1. Detection Method may no longer be a significant predictor if a
different model is used

2. Other models may obtain better prediction performance (e.g.
C–index)
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Random Survival Forests (RSF)

CART (1984) Random Forest (2001) RSF (2008)

Interpretation Prediction Assumptions Data Size

Cox PH Smaller
RSF Larger
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RSF Variable Importance

• Project Goal: Assess importance of Detection Method in
Prognostic models
• CoxPH variable importance usually measured by size of HR and

p–values
• RSF does not directly compute HR or p–values

• RSF Variable Importance

1. Values of a variable X are permuted among the patients.
2. Compute C-index using permuted X variable.
3. VIMP = C-index with true X - C-index with permuted X.
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Results of Random Survival Forests
• Variable Importance (VIMP) Scores:

Detection Method is second most important predictor in 4-year
cohort.

• C–Indices:

C-Index

Cox PH 0.76
RSF 0.75

Similar between two models.
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Reproducible Results

• Project analysis done in RMarkdown

• All code publicly available

• PLCO data may be requested from CDAS

https://github.com/longjp/plco-lung-detection-method

28 / 36

https://github.com/longjp/plco-lung-detection-method


Outline

Prognostic Models

Feature: Cancer Detection Method

Models and Algorithms: Random Survival Forests

Web Apps for Sharing Models

29 / 36



Glioblastoma Multiforme (GBM)

• GBM is the most deadly form of brain cancer

• 5-year survival rate < 10%

• Question: What variables (clinical, imaging, genomic) are
predictive of survival? Can we identify long-term survivors?
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Project Outline

• Considered publishing model as nomogram in paper
• These can be difficult to use / inaccessible to patients /

caregivers
31 / 36



Shiny Web App

https://biostatistics.mdanderson.org/shinyapps/GBM_Predict/
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Reproducible Research

https://github.com/longjp/GBMpredict
33 / 36
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Discussion

• Detection Method should be recorded in clinical trial data bases
/ cancer registries and considered as variable when constructing
prognostic models.

• Modern machine learning / AI tools should be considered when
constructing prognostic models. But they are not necessarily
superior to existing methods on given data set. Comparison of
new tool with existing methods is critical.

• Prognostic models can be deployed as web applications to
facilitate / accelerate use by clinicians, patients, and caregivers
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Thank you. Questions?
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